Emissions Characteristics of a Legacy Military Aircraft

Author(s):  
Edwin Corporan ◽  
Matthew J. DeWitt ◽  
Christopher D. Klingshirn ◽  
Shannon M. Mahurin ◽  
Meng-Dawn Cheng

Emissions from aircraft and associated ground equipment are major sources of local pollution at airports and military bases. These pollutant emissions, especially particulate matter (PM), have been receiving significant attention lately due to their proven harmful health and environmental effects. As the U.S. Environmental Protection Agency (EPA) tightens environmental standards, it is likely that military operations, including the basing of advanced and legacy aircraft, will be impacted. Accurate determination of emission indices from aircraft is necessary to properly assess their environmental burden. As such, the gaseous and PM emissions of a B-52 Stratofortress aircraft were characterized in this effort. This emissions study supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The main purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors for pollutants of fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional aerosol instruments were employed to physically characterize the PM emissions from two of the aircraft’s TF33 turbofan engines. Exit plane pollutant emissions were extracted via probes and transported through heated lines to the analytical instruments. Particle concentrations, size distributions and mass emissions, as well as engine smoke numbers (SN), soot volatile fraction and total hydrocarbon emissions were measured. The engines were tested at four power settings, from idle to 75% normal rated thrust (NRT) (95% N2 – turbine speed). Test results show relatively consistent PM and gaseous emissions between the two engines for most conditions tested. The measured TF33 PM mass emission indices (EI), including estimated sampling line losses, were in the range of 1.0–3.0 g/kg-fuel and the particle number (PN) EI were between 4.0–10.0E+15 particles/kg-fuel. The particle size data followed a single mode lognormal distribution for all power settings with particle geometric mean diameters ranging from 52 to 85 nm. In general, the aerosol instrumentation provided consistent and reliable measurements throughout the test campaign, therefore increasing confidence on their use for turbine engine PM emissions measurements.

1989 ◽  
Vol 21 (6-7) ◽  
pp. 685-698
Author(s):  
J. J. Convery ◽  
J. F. Kreissl ◽  
A. D. Venosa ◽  
J. H. Bender ◽  
D. J. Lussier

Technology transfer is an important activity within the ll.S. Environmental Protection Agency. Specific technology transfer programs such as the activities of the Center for Environmental Research Information, the Innovative and Alternative Technology Program, as well as the Small Community Outreach Program are used to encourage the utilization of cost-effective municipal pollution control technology. Case studies of three technologies including a plant operations diagnostic/remediation methodology, alternative sewer technologies and ultraviolet disinfection are presented. These case studies are presented retrospectively in the context of a generalized concept of how technology flows from science to utilization which was developed in a study by Allen (1977). Additional insights from this study are presented on the information gathering characteristics of engineers and scientists which may be useful in designing technology transfer programs. The recognition of the need for a technology or a deficiency in current practice are important stimuli other than technology transfer for accelerating the utilization of new technology.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 684
Author(s):  
Hee Won Son ◽  
Sun Hee Shim ◽  
Haeseong Oh ◽  
Jung Hyun Choi

In this study, the concentrations and characteristics of copper (Cu), zinc (Zn), and lead (Pb) contamination in sediment samples were investigated using aqua regia extraction and Tessier’s five-step sequential extraction. Based on the concentration of metals, the influence of the Hapcheon-Changnyeong weir on sediments in the Nakdong River was assessed. The origins of the contaminants, their bioavailability, and their mobility were determined using sequential extraction. Greater concentrations of heavy metals were found in samples collected closer to the weir. The largest proportion of Cu was identified in the residual fraction based on sequential extraction, whereas Zn was predominantly found in the reducible fraction. Iron-manganese in the reducible fraction of Zn has the potential to leach back to the water body. In addition, the combined concentration of fractions 1 and 2 of Cu comprised more than 20% of total amount that still has potential to affect the water quality. The results of this study were compared with existing sediment standards set out by the NIER (National Institute of Environmental Research), Canada, and US EPA (United States Environmental Protection Agency) guidelines, as well as the risk assessment code (RAC). The concentrations of heavy metals exceeded the standards set by the Canadian guideline by up to four times in particular samples, highlighting the need for continual monitoring.


2020 ◽  
Vol 12 (3) ◽  
pp. 1036 ◽  
Author(s):  
Luís Carmo-Calado ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Roberta Mota-Panizio ◽  
Bruno Guilherme-Garcia ◽  
Paulo Brito

The present work studies the possibility of energy recovery by thermal conversion of combustible residual materials, namely tires and rubber-plastic, plastic waste from outdoor luminaires. The waste has great potential for energy recovery (HHV: 38.6 MJ/kg for tires and 31.6 MJ/kg for plastic). Considering the thermal conversion difficulties of these residues, four co-combustion tests with mixtures of tires/plastics + pelletized Miscanthus, and an additional test with 100% Miscanthus were performed. The temperature was increased to the maximum allowed by the equipment, about 500 °C. The water temperature at the boiler outlet and the water flow were controlled (60 °C and 11 L/min). Different mixtures of residues (0–60% tires/plastics) were tested and compared in terms of power and gaseous emissions. Results indicate that energy production increased with the increase of tire residue in the mixture, reaching a maximum of 157 kW for 40% of miscanthus and 60% of tires. However, the automatic feeding difficulties of the boiler also increased, requiring constant operator intervention. As for plastic and rubber waste, fuel consumption generally decreased with increasing percentages of these materials in the blend, with temperatures ranging from 383 °C to 411 °C. Power also decreased by including such wastes (66–100 kW) due to feeding difficulties and cinder-fusing problems related to ash melting. From the study, it can be concluded that co-combustion is a suitable technology for the recovery of waste tires, but operational problems arise with high levels of residues in the mixture. Increasing pollutant emissions and the need for pre-treatments are other limiting factors. In this sense, the thermal gasification process was tested with the same residues and the same percentages of mixtures used in the co-combustion tests. The gasification tests were performed in a downdraft reactor at temperatures above 800 °C. Each test started with 100% acacia chip for reference (like the previous miscanthus), and then with mixtures of 0–60% of tires and blends of plastics and rubbers. Results obtained for the two residues demonstrated the viability of the technology, however, with mixtures higher than 40% it was very difficult to develop a process under stable conditions. The optimum condition for producing a synthesis gas with a substantial heating value occurred with mixtures of 20% of polymeric wastes, which resulted in gases with a calorific value of 3.64 MJ/Nm3 for tires and 3.09 MJ/Nm3 for plastics and rubbers.


Author(s):  
Kozi Nishio ◽  
Junzo Fujioka ◽  
Tetsuo Tatsumi ◽  
Isashi Takehara

With the aim of achieving higher efficiency, lower pollutant emissions, and multi-fuel capability for small to medium-sized gas turbine engines for use in co-generation systems, a ceramic gas turbine (CGT) research and development program is being promoted by the Japanese Ministry of International Trade and Industry (MITI) as a part of its “New Sunshine Project”. Kawasaki Heavy Industries (KHI) is participating in this program and developing a regenerative two-shaft CGT (CGT302). In 1993, KHI conducted the first test run of an engine with full ceramic components. At present, the CGT302 achieves 28.8% thermal efficiency at a turbine inlet temperature (TIT) of 1117°C under ISO standard conditions and an actual TIT of 1250°C has been confirmed at the rated speed of the basic CGT. This paper consists of the current state of development of the CGT302 and how ceramic components are applied.


Sign in / Sign up

Export Citation Format

Share Document