Rotordynamic Comparison of Built-Up Versus Solid Rotor Construction

Author(s):  
J. Jeffrey Moore ◽  
Andrew H. Lerche

Most manufacturers of multi-stage centrifugal compressors for the oil and gas industry utilize a solid shaft rotor construction. The impellers use a shrink fit onto the shaft with spacers in between the impellers. With the introduction of the guidelines in the 7th edition of API 617, built-up rotors for centrifugal compressors using a tie-bolt are recognized by API. This study compares the rotordynamic performance of the identical compressor using both a tie-bolt design and a more conventional solid rotor for a two-stage pipeline application. A full API 617 lateral analysis is performed on the two designs, assuming identical impeller flow path, stage spacing, and hub diameter. The critical speed and unbalance response are computed, and a full Level 2 stability analysis is performed for each case. The results show the tie-bolt construction to be slightly lighter and stiffer, resulting in a higher critical speed and improved rotordynamic stability.

Author(s):  
Matt Taher ◽  
Dragan Ristanovic ◽  
Cyrus Meher-Homji ◽  
Pradeep Pillai

Abstract Synchronous motor driven centrifugal compressors are widely used in the oil and gas industry. In evaluating the optimum selection of synchronous motor drivers for centrifugal compressors, it is important to understand the factors influencing a proper match for a centrifugal compressor and its synchronous motor driver. The buyer should specify process requirements and define possible operating scenarios for the entire life of the motor driven centrifugal compressor train. The compressor designer will use the buyer-specified process conditions to model the aerothermodynamic behavior of the compressor and characterize its performance. Performance, controllability, starting capabilities as well as the optimum power margin required for a future-oriented design must also be considered. This paper reviews the criteria for evaluating the optimal combination of a centrifugal compressor and its synchronous motor driver as an integral package. It also addresses API standard requirements on synchronous motor driven centrifugal compressors. Design considerations for optimal selection and proper sizing of compressor drivers include large starting torque requirements to enable compressor start from settle-out conditions and to prevent flaring are addressed. Start-up capabilities of the motor driver can significantly impact the reliability and operability of the compressor train. API 617 on centrifugal compressors refers to API 546 for synchronous motor drivers. In this paper, requirements of API 617 and 546 are reviewed and several important design and sizing requirements are presented. In the effort to optimize plant design, and maintain the performance requirements, the paper discusses optimization options, such as direct on-line starting method to explore the motor rating limits, and the use of synchronous motors for power factor correction to eliminate or reduce the need for reactive power compensation by capacitor banks. This paper presents a novel approach to show constant reactive power lines on traditional V curves. It also complements capability curves of synchronous motors with lines of constant efficiency. The paper discusses variable frequency drive options currently used for synchronous motors in compressor applications. The paper addresses the available variable frequency drive types, their impact on the electrical grid, and motor design considerations with a view to summarizing factors important to the selection of variable frequency drives.


2019 ◽  
Vol 3 ◽  
pp. 668-674
Author(s):  
Kurz Rainer

Gas turbine driven centrifugal compressors are a mainstay in the oil and gas industry for upstream and midstream applications. For an increased effort to reduce greenhouse gases, one of the most promising efforts is the increase in operational efficiency. For the applications in the oil and gas industry, the efficiency increase come from increased equipment efficiency, or from increased operational efficiency. This paper is about increasing operational efficiency. The discussion will lead from the operational characteristics of gas turbine driven compressors to the characteristics of the application, and ways in planning and operation to optimize the system.


Author(s):  
Matt Taher ◽  
Cyrus Meher-Homji

Gas turbine driven centrifugal compressors are widely used in the oil and gas industry. In evaluating the optimum selection of gas turbine drivers for centrifugal compressors, one of the main objectives should be to verify proper integration and matching of the centrifugal compressor to its gas turbine driver. Gas turbines are of standard designs, while centrifugal compressors are specifically designed to meet customer requirements. The purchaser should clearly specify process requirements and define possible operating scenarios for the entire life of the gas turbine driven centrifugal compressor train. Process requirements defined by the purchaser, will be used by the compressor designer to shape the aero-thermodynamic behavior of the compressor and characterize compressor performance. When designing a centrifugal compressor to be driven by a specific gas turbine, other design requirements are automatically introduced to centrifugal compressor design. Off-design performance, optimum power turbine speeds at site conditions as well as optimum power margin required for a future-oriented design must all be considered. Design and off-design performance of the selected gas turbine at site conditions influences the final selection of a properly matched centrifugal compressor design. In order to evaluate different designs and select the most technically viable solution, the purchaser should have a clear understanding of the factors influencing a proper match for a centrifugal compressor and its gas turbine driver. This paper discusses criteria for evaluating the most efficient combination of a centrifugal compressor and its gas turbine driver as an integral package from a purchaser’s viewpoint. It also addresses API standard requirements on gas turbine driven centrifugal compressors.


Author(s):  
Mohd Shahrizal Jasmani ◽  
Thomas Van Hardeveld ◽  
Mohd Faizal Bin Mohamed

Performance degradation monitoring of centrifugal compressor provides a means for the operators predict the behavior of their machines. Understanding the key principles in performance evaluation is essential for operators to benefit from this approach. In this paper, common performance degradation mechanisms found in centrifugal compressors for the oil and gas industry are outlined and related to their associated performance characteristics. Various analysis and evaluation techniques and approaches are elaborated with relevant requirements and assumptions for practical site application. A case study is also presented to demonstrate the application of performance degradation monitoring in a real-life operating environment. The benefits and limitations of the approach are also discussed. When combined with other condition monitoring approaches, this method provides a powerful tool to analyze and monitor centrifugal compressor performance which will then lead to useful recommendations for maintenance and operational interventions.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


2011 ◽  
pp. 19-33
Author(s):  
A. Oleinik

The article deals with the issues of political and economic power as well as their constellation on the market. The theory of public choice and the theory of public contract are confronted with an approach centered on the power triad. If structured in the power triad, interactions among states representatives, businesses with structural advantages and businesses without structural advantages allow capturing administrative rents. The political power of the ruling elites coexists with economic power of certain members of the business community. The situation in the oil and gas industry, the retail trade and the road construction and operation industry in Russia illustrates key moments in the proposed analysis.


Sign in / Sign up

Export Citation Format

Share Document