Combined Experimental and CFD Study of a HP Blade Multi-Pass Cooling System

Author(s):  
D. Jackson ◽  
P. Ireland ◽  
B. Cheong

Progress in the computing power available for CFD predictions now means that full geometry, 3 dimensional predictions are now routinely used in internal cooling system design. This paper reports recent work at Rolls-Royce which has compared the flow and htc predictions in a modern HP turbine cooling system to experiments. The triple pass cooling system includes film cooling vents and inclined ribs. The high resolution heat transfer experiments show that different cooling performance features are predicted with different levels of fidelity by the CFD. The research also revealed the sensitivity of the prediction to accurate modelling of the film cooling hole discharge coefficients and a detailed comparison of the authors’ computer predictions to data available in the literature is reported. Mixed bulk temperature is frequently used in the determination of heat transfer coefficient from experimental data. The current CFD data is used to compare the mixed bulk temperature to the duct centreline temperature. The latter is measured experimentally and the effect of the difference between mixed bulk and centreline temperature is considered in detail.

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash (VA) therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical high pressure (HP) turbine blade metal temperatures (1163 K to 1293 K) and coolant inlet temperatures (800 K to 900 K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter (FP), which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterize the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase computational fluid dynamics (CFD) model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modeled, and these results are used to help explain the behavior observed.


Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical HP turbine blade metal temperatures (1163K to 1293K) and coolant inlet temperatures (800K to 900K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterise the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase CFD model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modelled, and these results are used to help explain the behaviour observed.


Author(s):  
K. S. Chana ◽  
B. Haller

This paper is part one of a two part paper which considers a shroud film-cooling system designed using a two-dimensional approach. Heat transfer to rotor-casings has reached levels that are causing in-service difficulties to be experienced. Future designs are likely to need to employ film-cooling of some form. There is currently very little information available for film-cooling on shroudless turbine rotor-casing liners. Heat transfer literature on uncooled configurations is not extensive and in particular, spatially-detailed, time-accurate data are rare. This paper describes the aero-thermodynamic design and validation of a rotor casing film-cooling system for a transonic, high-pressure shroudless turbine stage. The design was carried out using a boundary layer code with the film-cooling hole geometry representative of an engine configuration and, has been subjected to mechanical constraints similar to those for an engine component. The design consists of two double rows of cooling holes and two ‘cooling-hole’ shape configurations, cylindrical and fan shaped. The design was tested in the QinetiQ short duration turbine test facility (TTF). Measurements taken include casing heat transfer using thin film gauges and stage exit total pressure, Mach number and flow angle using a three-hole pressure probe. Results showed that while the cooling produced a reduction in the heat transfer rate close to the injection point, the film was stripped off the casing and entrained in nozzle guide vane secondary and rotor overtip flow, where it was transported spanwise towards the hub in the rotor passage. Using the results obtained from this deign a second cooling design was carried out, using a three-dimensional approach this gave significantly better cooling performance. The thee-dimensional design and validation is reported in GT2009-60246 as part 2 of this paper.


Author(s):  
Norbert Domaschke ◽  
Jens von Wolfersdorf ◽  
Klaus Semmler

In order to enhance convective heat transfer in internal cooling channels, ribs are often used to manipulate the flow field and to benefit from their effect on thermal performance. This paper presents results from an experimental investigation into pressure loss and heat transfer in a smooth and a ribbed leading edge channel of a gas turbine blade internal cooling system. To model the cross section of a realistic leading edge cooling channel both the suction side and the leading edge of the blade profile are designed as curved walls with constant radii. The pressure side as well as the web is approximated by planar walls. For the ribbed channel, 45°-ribs related to the flow direction are placed on the pressure and the suction side with the normalized rib height e/dh = 0.10. Experiments have been carried out for the smooth and the ribbed channel. The flow rate was varied to cover a Reynolds number range from 20,000 to 50,000. The heat transfer has been determined using the transient liquid crystal method. Additional numerical simulations using the SST turbulence model were carried out to analyze the flow field in the channel. The computations were used for further interpretation of the experimental investigations, especially to determine the temperature field and velocity field and therefore the bulk temperature within the test section.


Author(s):  
A. R. Byerley ◽  
P. T. Ireland ◽  
T. V. Jones ◽  
S. A. Ashton

An experimental investigation was conducted to obtain highly detailed convective heat transfer measurements on an internal cooling duct wall around the entrance to a film cooling hole. Measurements were also made within the first five diameters of the film cooling hole. Thermochromic liquid crystals were used as surface temperature indicators in a large scale, perspex tunnel during the transient tests. A single film cooling hole was installed perpendicular to the main duct in a region of two-dimensional, fully developed turbulent flow. The main duct wall thermal boundary condition closely approximated an isothermal situation. The duct Reynolds number was held constant at a value characteristic of actual engine conditions while the ratio of the mean axial hole velocity to the duct centreline velocity was varied systematically between 0 and 8.0. The results are presented as contours of heat transfer coefficient normalized by that for the plain duct wall. Significant enhancement on the duct wall was measured up to a distance of seven hole diameters downstream of the hole. Both the magnitude and the shape of the enhancement contours were found to be highly dependent on the hole-to-duct velocity ratio.


Author(s):  
S. Na ◽  
B. Williams ◽  
R. A. Dennis ◽  
K. M. Bryden ◽  
T. I.-P. Shih

Computations were performed to study the internal and film cooling of a flat plate with and without thermal-barrier coating (TBC) that account for the heat transfer in the gas and in the solid. The goal is to understand the effects of the conjugate heat transfer on the temperature distribution in the region about the film-cooling hole and in the region further downstream of a row of film-cooling holes. Results obtained show that when there are no TBC, conduction heat transfer in the plate smears out the adverse effects of hot-gas entrainment by the film-cooling jet. When there is a TBC, the surface temperature and the temperature in the super alloy are greatly reduced because of the low thermal conductivity of the ceramic top coat (CTC), but the temperature gradient, which is nearly aligned with the X-axis further away from the film-cooling hole, turns towards the side of the flat plate with internal cooling, which alters the thermal stress distribution. Reducing the thermal conductivity of the CTC by a factor of 10 was found to increase slightly instead of decrease the surface temperature. This computational study is based on the ensemble average continuity, Navier-Stokes, and energy equations closed by the ideal gas equation of state and the two-equation realizeable k-ε turbulence model for the gas phase and the Fourier equations for conduction in the solid phase.


Author(s):  
A. R. Byerley ◽  
T. V. Jones ◽  
P. T. Ireland

Detailed heat transfer measurements were made near the entrance to a single film cooling hole using a transient liquid crystal technique in a large scale (100X) model. The hole inclination angle and flow extraction rate were varied across a range representative of actual engine conditions. Local values of heat transfer were found to exceed 6 times the levels associated with fully developed, turbulent channel flow. The region of maximum heat transfer enhancement occurred downstream of the hole entrance. Computational and experimental flow diagnostics were performed to investigate the mechanisms responsible for the observed heat transfer distributions. The removal of the upstream boundary layer and the downwash created by a vortex pair were found to be important phenomena.


Author(s):  
Philippe T. Lott ◽  
Ingrid Lepot ◽  
Emmanuel Chérière ◽  
François Thirifay ◽  
Klaus Semmler ◽  
...  

The design of turbine cooling systems remains one of the most challenging processes in engine development. Modern turbine cooling systems indeed invariably combine internal convection cooling with external film cooling in complex flow systems. The heat transfer and cooling processes are at the limit of current understanding and engine designers heavily rely on empirical tools and engineering judgment to produce new designs. These designs are moreover developed in the context of continuously increasing Turbine Entry Temperature (TET) as the latter leads to improvement of Specific Fuel Consumption (SFC). The present contribution fits into the frame of the ongoing FP7 ER-ICKA project. It focuses on achieving a significant progress in understanding turbine blade passages internal cooling systems by gathering high quality experimental data and by developing cooling state-of-the-art design capabilities based upon computer codes calibrated through these experimental data. In this context, the paper will describe the design optimisation and analysis work performed for two different internal cooling passages configurations, namely a static leading edge LP configuration passage (baseline experimentally tested at Stuttgart University) and a rotating mid-chord HP configuration passage (baseline experimentally tested at ONERA). The aim of the work was to develop a design methodology to optimise turbulence promoting ribs shape and arraying to improve the thermal behaviour of the internal cooling passages while avoiding excessive head loss. The optimisation was driven using decoupled rib design parameters for each ribbed wall to enhance flow interactions and maximise disturbances, to maximise potential increase in Heat Transfer Coefficients (HTCs). Any improvement in the thermal behaviour of the cooling system may indeed allow to either reduce the coolant mass flow rate requirements or increase the TET. To drive these optimisations, the ultimate target was hence to reduce the maximum blade metal temperature. To this end, suitable cost functions (objectives and constraints) have been derived and implemented. They will first be presented and discussed along with the parameterisations, so as to define the complete optimisation specification. The computational chain setup, among which the challenging mesh regeneration choices set based on a mesh dependence study will then be detailed. Validation of the CFD evaluation against the experimental results will be described for the static baseline configuration at least (rotating test measurements are still ongoing) and the optimisation results, which have led to significant gains in HTCs, will finally be analysed, data mining techniques allow to identify key parameters, path taken in the conception space and major trends.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Norbert Domaschke ◽  
Jens von Wolfersdorf ◽  
Klaus Semmler

In order to enhance convective heat transfer in internal cooling channels, ribs are often used to manipulate the flow field and to benefit from their effect on thermal performance. This paper presents results from an experimental investigation into pressure loss and heat transfer in a smooth and a ribbed leading edge channel of a gas turbine blade internal cooling system. To model the cross section of a realistic leading edge cooling channel both the suction side and the leading edge of the blade profile are designed as curved walls with constant radii. The pressure side as well as the web is approximated by planar walls. For the ribbed channel, 45 deg-ribs related to the flow direction are placed on the pressure and the suction side with the normalized rib height e/dh = 0.10. Experiments have been carried out for the smooth and the ribbed channel. The flow rate was varied to cover a Reynolds number range from 20,000 to 50,000. The heat transfer has been determined using the transient liquid crystal method. Additional numerical simulations using the SST turbulence model were carried out to analyze the flow field in the channel. The computations were used for further interpretation of the experimental investigations, especially to determine the temperature field and velocity field and therefore the bulk temperature within the test section.


Sign in / Sign up

Export Citation Format

Share Document