Study of a Two-Phase Flow Pump and Separator System

Author(s):  
Franc¸ois Gruselle ◽  
Johan Steimes ◽  
Patrick Hendrick

The Aero-Thermo-Mechanics (ATM) Department of ULB (Universite´ Libre de Bruxelles) is developing an original system to pump and separate a two-phase flow. Many applications need to extract a certain phase of a multiphase flow: oil extraction, flow in nuclear pumps, flow in aircraft lubrication systems, pulp and paper processing, etc. The main objective of this study is to obtain a lightweight, compact and efficient system that can both extract the gas of a two-phase flow and increase the pressure of the liquid phase. Prototypes with different designs were first tested at ULB on a specific test bench using water and air. The current prototype is a kind of axial-centrifugal pump. The axial part is used to separate the two phases of the flow and to collect, in the centrifugal part, the liquid phase only. The test results of the water-air prototypes have allowed to identify the key design and working parameters for efficient separation and pumping. A theoretical model has also been developed to describe the behavior of these prototypes. After successful tests with water-air mixtures, the technology has been implemented for a hot oil-air mixture. The tests with oil-air mixtures are performed on the aeroengine lubrication system test bench that the ATM Department developed and continues developing for other projects. At the same time, the flow field in the pump and separator system is being studied with commercial CFD (Computational Fluid Dynamics) software packages. Several two-phase flow models are considered for this particular application.

Author(s):  
François Gruselle ◽  
Johan Steimes ◽  
Patrick Hendrick

The Aero-Thermo-Mechanics (ATM) Department of ULB (Université Libre de Bruxelles) is developing an original system to pump and separate a two-phase flow. Many applications need to extract a certain phase of a multiphase flow: oil extraction, flow in nuclear pumps, flow in aircraft lubrication systems, pulp and paper processing, etc. The main objective of this study is to obtain a lightweight, compact, and efficient system that can both extract the gas of a two-phase flow and increase the pressure of the liquid phase. Prototypes with different designs were first tested at ULB on a specific test bench using water and air. The current prototype is a kind of axial-centrifugal pump. The axial part is used to separate the two phases of the flow and to collect, in the centrifugal part, the liquid phase only. The test results of the water-air prototypes have allowed to identify the key design and working parameters for efficient separation and pumping. A theoretical model has also been developed to describe the behavior of these prototypes. After successful tests with water-air mixtures, the technology has been implemented for a hot oil-air mixture. The tests with oil-air mixtures are performed on the aeroengine lubrication system test bench that the ATM Department developed and continues developing for other projects. At the same time, the flow field in the pump and separator system is being studied with commercial computational fluid dynamics software packages. Several two-phase flow models are considered for this particular application.


Author(s):  
Shouxu Qiao ◽  
Wenyi Zhong ◽  
Sijia Hao ◽  
Peiyao Qi ◽  
Sichao Tan

Abstract The present study investigates the air-water two-phase flow across a 90-degree vertical-upward elbow with the computational fluid dynamics (CFD) simulation. The Eulerian-Eulerian two-fluid model and the Multi Size Group (MUSIG) model are used to predict the development of the detailed interfacial structures between the two phases. The axial development of the void fraction and the interfacial area concentration are investigated and benchmarked with the experimental data measured using the four-sensor conductivity probe. It is concluded that CFD simulation can predict the characteristics distributions of void fraction and interfacial area concentration and their development downstream of the elbow. The double-peaked void fraction distribution is found to be caused by the secondary flow induced by the elbow. The liquid phase on the outer curvature moves to the inner curvature and forms a double counter rotating vortex, entraining the bubbles to form a double-peaked distribution. The elbow effects become dissipated between 33 and 63 hydraulic diameters. The simulation results of liquid-phase and gas-phase parameters can be used to develop the theoretical two-phase flow models for the elbow region.


2021 ◽  
Vol 149 ◽  
pp. 104881
Author(s):  
H. Bansal ◽  
P. Schulze ◽  
M.H. Abbasi ◽  
H. Zwart ◽  
L. Iapichino ◽  
...  

Author(s):  
F Bakhtar ◽  
H Mashmoushy ◽  
O C Jadayel

During the course of expansion of steam in turbines the fluid first supercools and then nucleates to become a two-phase mixture. The liquid phase consists of a large number of extremely small droplets which are difficult to generate except by nucleation. To reproduce turbine two-phase flow conditions requires a supply of supercooled vapour which can be achieved under blow-down conditions by the equipment employed. This paper is the third of a set describing an investigation into the performance of a cascade of rotor tip section profiles in wet steam and presents the results of the wake traverses.


2017 ◽  
Vol 95 ◽  
pp. 199-219 ◽  
Author(s):  
M. De Lorenzo ◽  
Ph. Lafon ◽  
M. Di Matteo ◽  
M. Pelanti ◽  
J.-M. Seynhaeve ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document