Investigation of Coriolis Forces Effect of Flow Structure and Heat Transfer Distribution in a Rotating Dimpled Channel

Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large-eddy simulations are used to investigate Coriolis forces effect on flow structure and heat transfer in a rotating dimpled channel. Two geometries with two dimple depths are considered, δ = 0.2 and 0.3 of channel height, for a wide range of rotation number, Rob = 0.0–0.70, based on mean bulk velocity and channel height. It is found that the turbulent flow is destabilized near the trailing side and stabilized near the leading side, with secondary flow structures generated in the channel under the effect of Coriolis forces. Higher heat transfer levels are obtained at the trailing surface of the channel, especially in regions of flow reattachment and boundary layer regeneration at the dimple surface. Coriolis forces showed a stronger effect on the flow structure for the shallow dimple geometry (δ = 0.2) compared to the deeper dimple where the growth and shrinkage of the flow recirculation zone in the dimple cavity with rotation were more pronounced than the deep dimple geometry (δ = 0.3). Under the action of rotation, heat transfer augmentation increased by 57% for δ = 0.2 and by 70% for δ = 0.3 on the trailing side and dropped by 50% for δ = 0.2 and by 45% for δ = 0.3 on the leading side from that of the stationary case.

2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large-eddy simulations are used to investigate Coriolis forces effect on flow structure and heat transfer in a rotating dimpled channel. Two geometries with two dimple depths are considered, δ=0.2 and 0.3 of channel height, for a wide range of rotation number, Rob=0.0–0.70, based on mean bulk velocity and channel height. It is found that the turbulent flow is destabilized near the trailing side and stabilized near the leading side, with secondary flow structures generated in the channel under the effect of Coriolis forces. Higher heat transfer levels are obtained at the trailing surface of the channel, especially in regions of flow reattachment and boundary layer regeneration at the dimple surface. Coriolis forces showed a stronger effect on the flow structure for the shallow dimple geometry (δ=0.2) compared with the deeper dimple where the growth and shrinkage of the flow recirculation zone in the dimple cavity with rotation were more pronounced than the deep dimple geometry (δ=0.3). Under the action of rotation, heat transfer augmentation increased by 57% for δ=0.2 and by 70% for δ=0.3 on the trailing side and dropped by 50% for δ=0.2 and by 45% for δ=0.3 on the leading side from that of the stationary case.


2004 ◽  
Vol 126 (4) ◽  
pp. 627-636 ◽  
Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

Results from large eddy simulations (LES) of fully developed flow in a 90 deg ribbed duct are presented with rib pitch-to-height ratio P/e=10 and a rib height-to-hydraulic-diameter ratio e/Dh=0.1. Three rotation numbers Ro=0.18, 0.36, and 0.68 are studied at a nominal Reynolds number based on bulk velocity of 20 000. Centrifugal buoyancy effects are included at two Richardson numbers of Ri=12, 28 (Buoyancy parameter, Bo=0.12 and 0.30) for each rotation case. Heat transfer augmentation on the trailing side of the duct due to the action of Coriolis forces alone asymptotes to a value of 3.7±5% by Ro=0.2. On the other hand, augmentation ratios on the leading surface keep decreasing with an increase in rotation number with values ranging from 1.7 at Ro=0.18 to 1.2 at Ro=0.67. Secondary flow cells augment the heat transfer coefficient on the smooth walls by 20% to 30% over a stationary duct. Centrifugal buoyancy further strengthens the secondary flow cells in the duct cross-section which leads to an additional increase of 10% to 15%. Buoyancy also accentuates the augmentation of turbulence near the trailing wall of the duct and increases the heat transfer augmentation ratio 10% to 20% over the action of Coriolis forces alone. However, it does not have any significant effect at the leading side of the duct. The overall effect of buoyancy on heat transfer augmentation for the ribbed duct is found to be less than 10% over the effect of Coriolis forces alone. Friction on the other hand is augmented 15% to 20% at the highest buoyancy number studied. Comparison with available experiments in the literature show excellent agreement.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large eddy simulation calculations are conducted for flow in a channel with dimples and protrusions on opposite walls with both surfaces heated at three Reynolds numbers, ReH=220, 940, and 9300, ranging from laminar, weakly turbulent, to fully turbulent, respectively. Turbulence generated by the separated shear layer in the dimple and along the downstream rim of the dimple is primarily responsible for heat transfer augmentation on the dimple surface. On the other hand, augmentation on the protrusion surface is mostly driven by flow impingement and flow acceleration between protrusions, while the turbulence generated in the wake has a secondary effect. Heat transfer augmentation ratios of 0.99 at ReH=220,2.9 at ReH=940, and 2.5 at ReH=9300 are obtained. Both skin friction and form losses contribute to pressure drop in the channel. Form losses increase from 45% to 80% with increasing Reynolds number. Friction coefficient augmentation ratios of 1.67, 4.82, and 6.37 are obtained at ReH=220, 940, and 9300, respectively. Based on the geometry studied, it is found that dimples and protrusions may not be viable heat transfer augmentation surfaces when the flow is steady and laminar.


Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

The use of dimple-protrusions for internal cooling of rotating turbine blades has been investigated. A channel with dimple imprint diameter to channel height ratio (H/D = 1.0), dimple depth to channel height ratio (δ/H = 0.2), spanwise and streamwise pitch to channel height ratios (P/H = S/H = 1.62) was modeled. Four rotation numbers; Rob = 0.0, 0.15, 0.39, and 0.64, at nominal flow Reynolds number, ReH = 10000, were investigated to quantify the effect of Coriolis forces on the flow structure and heat transfer in the channel. Under the influence of rotation, the leading (protrusion) side of the channel showed weaker flow impingement, larger wakes and delayed flow reattachment with increasing rotation number. The trailing (dimple) side experienced a smaller recirculation region inside the dimple and stronger flow ejection from the dimple cavity with increasing rotation. Secondary flow structures in the cross-section played a major role in transporting momentum away from the trailing side at high rotation numbers and limiting heat transfer augmentation. While heat transfer augmentation on the trailing side increases by over 90% at Rob = 0.64, overall Nusselt number and friction coefficient augmentation ratios decrease from 2.5 to 2.05, and 5.74 to 4.78, respectively, as rotation increased from Rob = 0 to Rob = 0.64.


Author(s):  
M. Elyyan ◽  
A. Rozati ◽  
D. K. Tafti

Flow field and heat transfer for parallel fins with dimples and protrusions are predicted with large-eddy simulations at a nominal Reynolds number based on fin pitch of 15,000. Dimple and protrusion depth and imprint diameter to channel height ratio are 0.4 and 2.0, respectively. The results show that on the dimple side, the flow and heat transfer is dominated by unsteady vorticity generated and ejected out by the separated shear layer in the dimple. The high turbulent energy which results from the unsteady dynamics is mostly responsible for heat transfer augmentation on the dimple side. A maximum augmentation of about 4 occurs in the reattachment zone of the dimple and immediately downstream of it. On the protrusion side, however, the augmentation in heat transfer is dominated by flow impingement at the front of the protrusion, which results in a maximum augmentation of 5.2. The overall heat transfer and friction coefficient augmentations of 2.34 and 6.35 are calculated for this configuration. Pressure drag from the dimple cavity and protrusion contribute 82% of the total pressure drop.


Author(s):  
Samer Abdel-Wahab ◽  
Danesh K. Tafti

Results from large eddy simulations (LES) of fully developed flow in a 90° ribbed duct are presented with rib pitch-to-height ratio P/e = 10 and a rib height-to-hydraulic-diameter ratio e/Dh = 0.1. Three rotation numbers Ro = 0.18, 0.36 and 0.68 are studied at a nominal Reynolds number based on bulk velocity of 20,000. Centrifugal buoyancy effects are included at two Richardson numbers of Ri = 12, 28 (Buoyancy number, Bo = 0.12 and 0.30) for each rotation case. Buoyancy strengthens the secondary flow cells in the duct cross-section which leads to an increase of 20% to 30% in heat transfer augmentation at the smooth walls over and above the effect of Coriolis forces. Buoyancy also accentuates the augmentation of turbulence near the trailing wall of the duct and increases the heat transfer augmentation ratio 10% to 20% over the action of Coriolis forces alone. However, it does not have any significant effect at the leading side of the duct. The overall effect of buoyancy on heat transfer augmentation for the ribbed duct is found to be less than 10% over the effect of Coriolis forces alone. Friction on the other hand is augmented 15% to 20% at the highest buoyancy number studied. Comparison with available experiments in the literature show excellent agreement.


Author(s):  
Evan A. Sewall ◽  
Danesh K. Tafti

This study focuses on a Large Eddy Simulation (LES) of the entrance region of a gas turbine blade internal cooling duct. The square channel is fitted with in-line turbulators orthogonal to the flow. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.1, and the rib pitch-to-rib height ratio (P/e) is 10. A constant temperature boundary condition is imposed on the walls and the ribs; the flow Reynolds number is 20,000; and the rotation number is 0.3. Results from these calculations indicate that flow development length is much longer than in a stationary channel because of the large effect of rotational Coriolis forces on mean flow and heat transfer, which only begin to exert a substantial influence after 3 to 4 rib pitches from the entrance to the duct. During the development length, heat transfer augmentation increases on the trailing and smooth walls, while it decreases on the leading wall. At the ninth rib, the mean augmentation ratios are to within −12% and −14% of their fully developed values on the trailing and smooth walls, respectively. At both walls there is a gradual increasing trend which suggests that fully developed conditions have not been achieved by the heat transfer coefficient. On the leading wall, however, all results indicate that the heat transfer coefficient has achieved its fully developed augmentation ratio. The calculation clearly shows that the direct effect of Coriolis forces on turbulent structure and intensity have a much stronger effect on heat transfer augmentation than the effect of secondary flows.


Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


Sign in / Sign up

Export Citation Format

Share Document