Three-Dimensional Non-Reflecting Boundary Condition for Linearized Flow Solvers

Author(s):  
Paul J. Petrie-Repar

A three-dimensional (3D) non-reflecting boundary condition for linearized flow solvers is presented. The unsteady aerodynamic modes at the inlet and outlet (far-field) are numerically determined by solving an eigen problem for the semi-discretized flow equations on a two-dimensional mesh. Unlike previous methods the shape of the far-field can be general and the non-uniformity of the steady flow across the far-field is considered. The calculated unsteady modes are used to decompose the unsteady flow at the far-field into modes. The direction of each mode is determined, and incoming modes are prescribed and outgoing modes are extrapolated. The results of 2D and 3D inviscid linearised flow simulations using the new boundary condition are presented.

Author(s):  
Judy Busby ◽  
Doug Sondak ◽  
Brent Staubach ◽  
Roger Davis

Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migretion effects on the turbine blade tip and outer air seal heat loads. The LDS model is obtained from an unsteady inviscid calculation. The inviscid LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. The feasibility of the inviscid LDS model is demonstrated on a single stage, three-dimensional, vane-blade turbine with a hot streak entering the vane passage at mid-pitch and mid-span. The steady viscous solution with the LDS model is compared to the time-averaged viscous, steady viscous and time-averaged inviscid computations. The LDS model reproduces the time-averaged viscous temperature distribution on the outer air seal to within 2.3%, while the steady viscous has an error of 8.4%, and the time-averaged inviscid calculation has an error of 17.2%. The solution using the LDS model is obtained at a cost in CPU time that is 26% of that required for a time-averaged viscous computation.


1980 ◽  
Vol 31 (4) ◽  
pp. 252-284
Author(s):  
E.H. Dowell

SummarySignificant new results are presented to show to what extent a simplified theory for transonic flow may be used. Solutions are obtained by classical techniques and compared with experiment. Results are given for two-dimensional and three-dimensional, steady and unsteady flow. The effects of flow separation and improvements in Bernoulli’s equation and the surface boundary condition are also briefly discussed.


Author(s):  
Wei Ning ◽  
Li He

An quasi three-dimensional time-linearized Euler method has been developed to compute unsteady flows around oscillating blades. In the baseline method, unsteady flow is decomposed into a steady flow plus a linear harmonically varying unsteady flow. Both the steady flow equations and the unsteady perturbation equations are solved using a pseudo time-marching method. Based upon this method, a novel nonlinear harmonic Euler method has been developed. Due to the nonlinearity of the aerodynamic governing equations, time-averaging generates extra “unsteady stress” terms. These nonlinear effects are included by a strongly coupled approach between the perturbation equations and the time-averaged equations. Numerical results demonstrate that nonlinear effects are very effectively modelled by the nonlinear harmonic method.


1999 ◽  
Vol 122 (1) ◽  
pp. 62-67 ◽  
Author(s):  
J. Busby ◽  
D. Sondak ◽  
B. Staubach ◽  
R. Davis

Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads. The LDS model is obtained from an unsteady inviscid calculation. The inviscid LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. The feasibility of the inviscid LDS model is demonstrated on a single-stage, three-dimensional, vane-blade turbine with a hot streak entering the vane passage at midpitch and midspan. The steady viscous solution with the LDS model is compared to the time-averaged viscous, steady viscous, and time-averaged inviscid computations. The LDS model reproduces the time-averaged viscous temperature distribution on the outer air seal to within 2.3 percent, while the steady viscous has an error of 8.4 percent, and the time-averaged inviscid calculation has an error of 17.2 percent. The solution using the LDS model is obtained at a cost in CPU time that is 26 percent of that required for a time-averaged viscous computation. [S0889-504X(00)00601-2]


1998 ◽  
Vol 120 (3) ◽  
pp. 508-514 ◽  
Author(s):  
W. Ning ◽  
L. He

A quasi-three-dimensional time-linearized Euler method has been developed to compute unsteady flows around oscillating blades. In the baseline method, unsteady flow is decomposed into a steady flow plus a linear harmonically varying unsteady flow. Both the steady flow equations and the unsteady perturbation equations are solved using a pseudo-time-marching method. Based upon this method, a novel nonlinear harmonic Euler method has been developed. Due to the nonlinearity of the aerodynamic governing equations, time-averaging generates extra “unsteady stress” terms. These nonlinear effects are included by a strongly coupled approach between the perturbation equations and the time-averaged equations. Numerical results demonstrate that nonlinear effects are very effectively modeled by the nonlinear harmonic method.


2013 ◽  
Vol 717 ◽  
pp. 1-29 ◽  
Author(s):  
A. Rao ◽  
J. Leontini ◽  
M. C. Thompson ◽  
K. Hourigan

AbstractThe wake of a rotating circular cylinder in a free stream is investigated for Reynolds numbers $\mathit{Re}\leqslant 400$ and non-dimensional rotation rates of $\alpha \leqslant 2. 5$. Two aspects are considered. The first is the transition from a steady flow to unsteady flow characterized by periodic vortex shedding. The two-dimensional computations show that the onset of unsteady flow is delayed to higher Reynolds numbers as the rotation rate is increased, and vortex shedding is suppressed for $\alpha \geqslant 2. 1$ for all Reynolds numbers in the parameter space investigated. The second aspect investigated is the transition from two-dimensional to three-dimensional flow using linear stability analysis. It is shown that at low rotation rates of $\alpha \leqslant 1$, the three-dimensional transition scenario is similar to that of the non-rotating cylinder. However, at higher rotation rates, the three-dimensional scenario becomes increasingly complex, with three new modes identified that bifurcate from the unsteady flow, and two modes that bifurcate from the steady flow. Curves of marginal stability for all of the modes are presented in a parameter space map, the defining characteristics for each mode presented, and the physical mechanisms of instability are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


2021 ◽  
Vol 7 (3) ◽  
pp. 209-219
Author(s):  
Iris J Holzleitner ◽  
Alex L Jones ◽  
Kieran J O’Shea ◽  
Rachel Cassar ◽  
Vanessa Fasolt ◽  
...  

Abstract Objectives A large literature exists investigating the extent to which physical characteristics (e.g., strength, weight, and height) can be accurately assessed from face images. While most of these studies have employed two-dimensional (2D) face images as stimuli, some recent studies have used three-dimensional (3D) face images because they may contain cues not visible in 2D face images. As equipment required for 3D face images is considerably more expensive than that required for 2D face images, we here investigated how perceptual ratings of physical characteristics from 2D and 3D face images compare. Methods We tested whether 3D face images capture cues of strength, weight, and height better than 2D face images do by directly comparing the accuracy of strength, weight, and height ratings of 182 2D and 3D face images taken simultaneously. Strength, height and weight were rated by 66, 59 and 52 raters respectively, who viewed both 2D and 3D images. Results In line with previous studies, we found that weight and height can be judged somewhat accurately from faces; contrary to previous research, we found that people were relatively inaccurate at assessing strength. We found no evidence that physical characteristics could be judged more accurately from 3D than 2D images. Conclusion Our results suggest physical characteristics are perceived with similar accuracy from 2D and 3D face images. They also suggest that the substantial costs associated with collecting 3D face scans may not be justified for research on the accuracy of facial judgments of physical characteristics.


2021 ◽  
pp. 021849232110304
Author(s):  
Mehrnoush Toufan ◽  
Zahra Jabbary ◽  
Naser Khezerlou aghdam

Background To quantify valvular morphological assessment, some two-dimensional (2D) and three-dimensional (3D) scoring systems have been developed to target the patients for balloon mitral valvuloplasty; however, each scoring system has some potential limitations. To achieve the best scoring system with the most features and the least restrictions, it is necessary to check the degree of overlap of these systems. Also the factors related to the accuracy of these systems should be studied. We aimed to determine the correlation between the 2D Wilkins and real-time transesophageal three-dimensional (RT3D-TEE) scoring systems. Methods This cross-sectional study was performed on 156 patients with moderate to severe mitral stenosis who were candidates for percutaneous balloon valvuloplasty. To morphologic assessment of mitral valve, patients were examined by 2D-transthoracic echocardiography and RT3D-TEE techniques on the same day. Results A strong association was found between total Wilkins and total RT3D-TEE scores (r = 0.809, p < 0.001). The mean mitral valve area assessed by the 2D and 3D was 1.07 ± 0.25 and 1.03 ± 0.26, respectively, indicating a mean difference of 0.037 cm2 (p = 0.001). We found a strong correlation between the values of mitral valve area assessed by 2D and 3D techniques (r = 0.846, p < 0.001). Conclusion There is a high correlation between the two scoring systems in terms of evaluating dominant morphological features. Partially, mitral valve area overestimation in the 2D-transthoracic echocardiography and its inability to assess commissural involvement as well as its dependence on patient age were exceptions in this study.


2020 ◽  
Author(s):  
Thaksen Jadhav ◽  
Yuan Fang ◽  
Cheng-Hao Liu ◽  
Afshin Dadvand ◽  
Ehsan Hamzehpoor ◽  
...  

We report the first transformation between crystalline vinylene-linked two-dimensional (2D) polymers and crystalline cyclobutane-linked three-dimensional (3D) polymers. Specifically, absorption-edge irradiation of the 2D poly(arylenevinylene) covalent organic frameworks (COFs) results in topological [2+2] cycloaddition cross-linking the π-stacked layers in 3D COFs. The reaction is reversible and heating to 200°C leads to a cycloreversion while retaining the COF crystallinity. The resulting difference in connectivity is manifested in the change of mechanical and electronic properties, including exfoliation, blue-shifted UV-Vis absorption, altered luminescence, modified band structure and different acid-doping behavior. The Li-impregnated 2D and 3D COFs show a significant ion conductivity of 1.8×10<sup>−4</sup> S/cm and 3.5×10<sup>−5</sup> S/cm, respectively. Even higher room temperature proton conductivity of 1.7×10<sup>-2</sup> S/cm and 2.2×10<sup>-3</sup> S/cm was found for H<sub>2</sub>SO<sub>4</sub>-treated 2D and 3D COFs, respectively.


Sign in / Sign up

Export Citation Format

Share Document