Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System

Author(s):  
F. Ben Ahmed ◽  
R. Tucholke ◽  
B. Weigand ◽  
K. Meier

A representative part of an active clearance control system for a low pressure turbine has been numerically investigated. The setup consisted of a cylindrical plenum with 20 inline arranged impinging jets at the bottom side discharging on a flat plate. The study focused on the influence of the nozzle geometry on the flow as well as heat transfer characteristics at the impingement plate and the discharge pressure drop. CFD (Computational Fluid Dynamics) simulations were performed for a constant Reynolds number ReD = 7,500 and different mean jet Mach numbers up to 0.7. Different length-to-diameter ratios of the jet holes (L/D) and various hole shapes (cylindrical, elliptic, convergent and divergent conical) were investigated to evaluate the performance of the impingement cooling configurations. The predictions showed a significant influence of the length-to-diameter ratio of the orifice bores on the heat transfer and the pressure losses. For L/D = 2 no suction of the ambient air in the nozzles was observed. In comparison to the configuration with L/D = 0.25 an improvement of the discharge coefficient of 9% for Ma = 0.7 and 20% for Ma = 0.17 was achieved. However, the highest heat transfer was observed for the smallest L/D-ratio of 0.25. The shape variation showed that only the elliptic jet holes with a ratio of AR = 0.5 enhanced the overall heat transfer and simultaneously reduced the pressure losses because of discharging onto the target plate. This result was found to be valid for all investigated jet Mach numbers. Additionally, for both elliptic jet aspect ratios of 0.5 and 2 the axis-switchover phenomenon of the flow was observed.

2013 ◽  
Vol 465-466 ◽  
pp. 496-499
Author(s):  
Mohd Firdaus Bin Abas ◽  
Abdullah Aslam ◽  
Hamidon bin Salleh ◽  
Nor Adrian Bin Nor Salim

Efforts have been given to improve the turbine blades ability to withstand high temperature for a long period of time by implementing effective cooling system. There are many aspects that should be considered when implementing impingement cooling. This paper will only cover two trending aspects in impingement cooling implementation; the jet-to-target plate distance and the application of ribs in promoting better impingement cooling performance. For target plate distance to impingement jet diameter value, H/d > 1, the area-averaged Nusselt number also decreases as the H/d value increases. This may have been due to a reduction of the amount of momentum exerted by the impinging jets onto the target plate. For H/d < 1, the results have been proven otherwise. Heat transfer in impingement/effusion cooling system in crossflow with rib turbulators showed higher heat transfer rate than that of a surface without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. It could be concluded that both H/d ratio and ribs installation play an important role in enhancing impingement cooling systems heat transfer effectiveness.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Mirko Micio ◽  
Antonio Andreini

Heat transfer and pressure drop for a representative part of a turbine active cooling system were numerically investigated by means of an in-house code. This code has been developed in the framework of an internal research program and has been validated by experiments and CFD. The analysed system represents the classical open bird cage arrangement that consists of an air supply pipe with a control valve and the present system with a collector box and pipes, which distribute cooling air in circumferential direction of the casing. The cooling air leaves the ACC system through small holes at the bottom of the tubes. These tubes extend at about 180° around the casing and may involve a huge number of impinging holes; as a consequence, the impinging jets mass flow rate may vary considerably along the feeding manifold with a direct impact on the achievable heat transfer levels. This study focuses on the performance, in terms of heat transfer coefficient and pressure drop, of several impinging tube geometries. As a result of this analysis, several design solutions have been compared and discussed.


Author(s):  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Mirko Micio ◽  
Daniele Coutandin

Heat transfer and discharge coefficient behaviour for a representative part of a turbine active cooling system were numerically investigated by means of an in-house code. This code has been developed in the framework of an internal research program and has been validated by experiments and CFD. The analysed system represents the classical open bird cage arrangement that consists of an air supply pipe with a control valve and the present system with a collector box and pipes, which distribute cooling air in circumferential direction of the casing. The cooling air leaves the ACC system through small holes at the bottom of the tubes. These tubes extend at about 180° around the casing and may involve a huge number of impinging holes; as a consequence, the impinging jets mass flow rate may vary considerably along the feeding manifold with a direct impact on the achievable heat transfer levels. This study focuses on the performance, in terms of heat transfer coefficient and pressure drop, of several impinging tube geometries. As a result of this analysis, several design solutions have been compared and discussed.


Author(s):  
F. Ben Ahmed ◽  
B. Weigand ◽  
K. Meier

Flow mechanisms, heat transfer and discharge coefficient characteristics for a representative part of a turbine casing cooling system, consisting of an array of 20 impinging jets, were numerically investigated. The study focused on the influence of the jet Mach number while maintaining the Reynolds number constant at Re = 7,500. Therefore, the orifice bore diameter or the fluid density had to be varied. The objectives of the current CFD simulations have not been adressed before in literature, not only because heat transfer characteristics and pressure drop are given for impingement jet Mach numbers up to 0.72 at a constant relatively low Reynolds number, but also because fundamental understanding of physical phenomena of the flow in the cylindrical plenum and in the small sharp-edged orifices at the bottom side of the tube is provided. Increasing the Mach number by simultaneously reducing the orifice diameters led to slightly decreasing Nusselt numbers, with average deviations of the order of 14%. However, the heat transfer coefficient increased considerably with increasing Mach number. On the contrary, the variation of the Mach number by varying the density showed only a slight influence on the heat transfer coefficient. The predicted discharge coefficients increased significantly by augmenting the Mach number.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Author(s):  
F. Gori ◽  
F. De Nigris ◽  
E. Pippione ◽  
G. Scavarda

The paper describes a patented proposal to use jets of air in the cooling system of heavy trucks. Preliminary tests have been carried out, in the Heat Transfer Laboratory of the University of Rome “Tor Vergata”, to evaluate the heat transfer characteristics of a jet flow of air, impinging onto an externally finned cylinder. The cylinder is internally heated with an electric system. Thermocouples, located inside the cylinder, allow to measure the wall temperatures, in order to calculate the local and average convective heat transfer coefficients. A preliminary design of the practical apparatus, applied to heavy trucks, has been done in cooperation with Iveco. Nozzles are designed to be put after the fan of heavy trucks to converge air, in the form of jets, onto the tube where the charged air is flowing from the outlet of the turbo-compressor. The efficiency of the jet flow increases the cooling performances but, due to the high temperature at the outlet of the turbo-compressor, it may not be enough. The heat transfer cooling performances are enhanced if the tube to be cooled is externally finned. Some preliminary experiments have been carried out in a real scale bank test of an heavy truck engine at the Engineering Testing Laboratories Department of Iveco. Comparisons are done between the experiments and a simple theoretical model. Some conclusions are drawn about the cooling at different fluid dynamics conditions of the impinging jets.


1988 ◽  
Vol 110 (1) ◽  
pp. 60-67 ◽  
Author(s):  
H. Halle ◽  
J. M. Chenoweth ◽  
M. W. Wambsganss

Throughout the life of a heat exchanger, a significant part of the operating cost arises from pumping the heat transfer fluids through and past the tubes. The pumping power requirement is continuous and depends directly upon the magnitude of the pressure losses. Thus, in order to select an optimum heat exchanger design, it is is as important to be able to predict pressure drop accurately as it is to predict heat transfer. This paper presents experimental measurements of the shellside pressure drop for 24 different segmentally baffled bundle configurations in a 0.6-m (24-in.) diameter by 3.7-m (12-ft) long shell with single inlet and outlet nozzles. Both plain and finned tubes, nominally 19-mm (0.75-in.) outside diameter, were arranged on equilateral triangular, square, rotated triangular, and rotated square tube layouts with a tube pitch-to-diameter ratio of 1.25. Isothermal water tests for a range of Reynolds numbers from 7000 to 100,000 were run to measure overall as well as incremental pressure drops across sections of the exchanger. The experimental results are given and correlated with a pressure drop versus flowrate relationship.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Sign in / Sign up

Export Citation Format

Share Document