Recent Trends of Impingement Cooling System Enhancement for Gas Turbine

2013 ◽  
Vol 465-466 ◽  
pp. 496-499
Author(s):  
Mohd Firdaus Bin Abas ◽  
Abdullah Aslam ◽  
Hamidon bin Salleh ◽  
Nor Adrian Bin Nor Salim

Efforts have been given to improve the turbine blades ability to withstand high temperature for a long period of time by implementing effective cooling system. There are many aspects that should be considered when implementing impingement cooling. This paper will only cover two trending aspects in impingement cooling implementation; the jet-to-target plate distance and the application of ribs in promoting better impingement cooling performance. For target plate distance to impingement jet diameter value, H/d > 1, the area-averaged Nusselt number also decreases as the H/d value increases. This may have been due to a reduction of the amount of momentum exerted by the impinging jets onto the target plate. For H/d < 1, the results have been proven otherwise. Heat transfer in impingement/effusion cooling system in crossflow with rib turbulators showed higher heat transfer rate than that of a surface without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. It could be concluded that both H/d ratio and ribs installation play an important role in enhancing impingement cooling systems heat transfer effectiveness.

Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


Author(s):  
F. Ben Ahmed ◽  
R. Tucholke ◽  
B. Weigand ◽  
K. Meier

A representative part of an active clearance control system for a low pressure turbine has been numerically investigated. The setup consisted of a cylindrical plenum with 20 inline arranged impinging jets at the bottom side discharging on a flat plate. The study focused on the influence of the nozzle geometry on the flow as well as heat transfer characteristics at the impingement plate and the discharge pressure drop. CFD (Computational Fluid Dynamics) simulations were performed for a constant Reynolds number ReD = 7,500 and different mean jet Mach numbers up to 0.7. Different length-to-diameter ratios of the jet holes (L/D) and various hole shapes (cylindrical, elliptic, convergent and divergent conical) were investigated to evaluate the performance of the impingement cooling configurations. The predictions showed a significant influence of the length-to-diameter ratio of the orifice bores on the heat transfer and the pressure losses. For L/D = 2 no suction of the ambient air in the nozzles was observed. In comparison to the configuration with L/D = 0.25 an improvement of the discharge coefficient of 9% for Ma = 0.7 and 20% for Ma = 0.17 was achieved. However, the highest heat transfer was observed for the smallest L/D-ratio of 0.25. The shape variation showed that only the elliptic jet holes with a ratio of AR = 0.5 enhanced the overall heat transfer and simultaneously reduced the pressure losses because of discharging onto the target plate. This result was found to be valid for all investigated jet Mach numbers. Additionally, for both elliptic jet aspect ratios of 0.5 and 2 the axis-switchover phenomenon of the flow was observed.


Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Phil Ligrani ◽  
Michael D. Fox ◽  
Hee-Koo Moon

Data which illustrate the combined and separate effects of hole array spacing, jet-to-target plate distance, and Reynolds number on cross-flows, and the resulting heat transfer, for an impingement jet array are presented. The array of impinging jets are directed to one flat surface of a channel which is bounded on three sides. Considered are Reynolds numbers ranging from 8,000 to 50,000, jet-to-target plate distances of 1.5D, 3.0D, 5.0D, and 8.0D, and steamwise and spanwise hole spacing of 5D, 8D, and 12D, where D is the impingement hole diameter. In general, the cumulative accumulations of cross-flows, from sequential rows of jets, reduce the effectiveness of each individual jet (especially for jets at larger streamwise locations). The result is sequentially decreasing periodic Nusselt number variations with streamwise development, which generally become more significant as the Reynolds number increases, and as hole spacing decreases. In other situations, the impingement cross-flow results in locally augmented Nusselt numbers. Such variations most often occur at larger downstream locations, as jet interactions are more vigorous, and local magnitudes of mixing and turbulent transport are augmented. This occurs in channels at lower Reynolds numbers, where impingement jets are confined by smaller hole spacing, and smaller jet-to-target plate distance. The overall result is complex dependence of local, line-averaged, and spatially-averaged Nusselt numbers on hole array spacing, jet-to-target plate distance, and impingement jet Reynolds number. Of particular importance are the effects of these parameters on the coherence of the shear layers which form around the impingement jets, as well as on the Kelvin-Helmholtz instability vortices which develop within the shear interface around each impingement jet.


2018 ◽  
Vol 35 (3) ◽  
pp. 241-250 ◽  
Author(s):  
S. Eiamsa-ard ◽  
C. Nuntadusit ◽  
K. Wongcharee ◽  
V. Chuwattanakul

Abstract The heat transfer performance of swirling impinging jets (SIJs) was investigated and compared with that of the conventional jet (CIJ). The swirling jets were induced by helical rod inserts (HRs) fitted with pipe nozzles. The helical rod inserts with two different rod diameter to nozzle diameter ratios (d/D) of 0.46 and 0.64 were employed for comparison. Jet-to-plate distance to nozzle diameter ratio (L/D) was varied from 1 to 5 while Reynolds number was fixed at 20,000. The temperature and Nusselt number distributions on the impinged plate were measured and evaluated using thermochromic liquid crystal (TLC) sheet and image processing technique. The experimental results showed that the swirling jet (SJ) at d/D=0.64 gave higher average heat transfer rate than the SJ at d/D=0.46 up to 6.41 % and the conventional jet (CJ) up to 35.05 %. In addition, Nusselt number peak of swirling jets increased as jet-to-plate distance decreased.


Author(s):  
K. Funazaki ◽  
Y. Tarukawa ◽  
T. Kudo ◽  
S. Matsuno ◽  
R. Imai ◽  
...  

This paper deals with fundamental research on heat transfer characteristics inside a cooling configuration designed for an ultra-high temperature turbine nozzle. The cooling configuration adopted in this study integrates impingement cooling and pin cooling devices into one body, aiming at the enhancement of the effective area for the impingement cooling. A large-scaled test model of this cooling system is constructed to measure its internal heat transfer distribution, where a number of pins are sandwiched between an impingement plate and a target plate. The target plate are provided with several air discharging holes. A focus of this study is on how the heat transfer characteristics depend on the effect of stand-off distance: a distance between these two plates. Ratios of the stand-off distance to the impingement hole diameter varies from 0.75 to 2.00. A transient measurement technique using narrow-banded thermochromatic liquid crystal (TLC) is employed to determine the heat transfer characteristics of the model. Numerical investigations using a commercial CFD code are also executed and those results are compared with the experimental data. It is accordingly found that the numerical results almost match the measurements. It is also shown that the addition of pins to the conventional impingement cooling system can produce about 50% increase in the effective cooling area.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Alexandros Terzis ◽  
Peter Ott ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand ◽  
Magali Cochet

The current capabilities of the foundry industry allow the production of integrally cast turbine airfoils. Impingement cooling effectiveness can be then further increased due to the manufacturing feasibility of narrow impingement cavities in a double-wall configuration. This study examines experimentally, using the transient liquid crystal technique, the cooling performance of narrow cavities consisting of a single row of five impingement holes. Heat transfer coefficient distributions are obtained for all channel interior surfaces over a range of engine realistic Reynolds numbers varying between 10,900 and 85,900. Effects of streamwise jet-to-jet spacing (X/D), channel width (Y/D), jet-to-target plate distance (Z/D), and jet offset position (Δy∕D) from the channel centerline are investigated composing a test matrix of 22 different geometries. Additionally, the target plate and sidewalls heat transfer rates are successfully correlated within the experimental uncertainties providing an empirical heat transfer model for narrow impingement channels. The results indicate similarities with multijet impingement configurations; however, the achievable heat transfer level is about 20% lower compared to periodic multijet impingement correlations found in open literature.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Author(s):  
F. Gori ◽  
F. De Nigris ◽  
E. Pippione ◽  
G. Scavarda

The paper describes a patented proposal to use jets of air in the cooling system of heavy trucks. Preliminary tests have been carried out, in the Heat Transfer Laboratory of the University of Rome “Tor Vergata”, to evaluate the heat transfer characteristics of a jet flow of air, impinging onto an externally finned cylinder. The cylinder is internally heated with an electric system. Thermocouples, located inside the cylinder, allow to measure the wall temperatures, in order to calculate the local and average convective heat transfer coefficients. A preliminary design of the practical apparatus, applied to heavy trucks, has been done in cooperation with Iveco. Nozzles are designed to be put after the fan of heavy trucks to converge air, in the form of jets, onto the tube where the charged air is flowing from the outlet of the turbo-compressor. The efficiency of the jet flow increases the cooling performances but, due to the high temperature at the outlet of the turbo-compressor, it may not be enough. The heat transfer cooling performances are enhanced if the tube to be cooled is externally finned. Some preliminary experiments have been carried out in a real scale bank test of an heavy truck engine at the Engineering Testing Laboratories Department of Iveco. Comparisons are done between the experiments and a simple theoretical model. Some conclusions are drawn about the cooling at different fluid dynamics conditions of the impinging jets.


Author(s):  
Kenneth W. Van Treuren ◽  
Zuolan Wang ◽  
Peter T. Ireland ◽  
Terry V. Jones ◽  
S. T. Kohler

Recent work, Van Treuren et al. (1993), has shown the transient method of measuring heat transfer under an array of impinging jets allows the determination of local values of adiabatic wall temperature and heat transfer coefficient over the complete surface of the target plate. Using this technique, an inline array of impinging jets has been tested over a range of average jet Reynolds numbers (10,000–40,000) and for three channel height to jet hole diameter ratios (1, 2, and 4). The array is confined on three sides and spent flow is allowed to exit in one direction. Local values are averaged and compared with previously published data in related geometries. The current data for a staggered array is compared to those from an inline array with the same hole diameter and pitch for an average jet Reynolds number of 10,000 and channel height to diameter ratio of one. A comparison is made between intensity and hue techniques for measuring stagnation point and local distributions of heat transfer. The influence of the temperature of the impingement plate through which the coolant gas flows on the target plate heat transfer has been quantified.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Sign in / Sign up

Export Citation Format

Share Document