Numerical and Experimental Analysis of Inlet Non-Uniformity Influence on Intercooler Performance

Author(s):  
Wei Dong ◽  
Chun Mao ◽  
Jian-Jun Zhu ◽  
Yong Chen

The inlet flow of intercooler will be not uniform when the air flows through diffuser behind the low-pressure compressor. With the aid of the CFD technology, the flow field and pressure drop of gas turbine intercooler are analyzed. The equivalent flow area and the equivalent heat transfer methods are proposed in numerical simulations, hence the modeling problem of entire intercooler flow path is solved effectively. Three kinds of scheme of flow path are computed and the flow fields and pressure drops are given in this paper. The influence of inlet flow non-uniformity on the performance of intercooler is analyzed. The numerical computation results indicate that the CFD technology is valuable for analyzing the details of the flow field and improving the intercooler flow path design. The combination of the CFD technology and the intercooler design technique can improve the design of the flow path of gas turbine intercooler. The total pressure loss of the intercooler can be effectively reduced by improving the inlet flow non-uniformity. By comparing the experiment results and computation results of intercooler flow and heat transfer with the plate-fin heat exchanger design calculation, inlet flow non-uniformity has less influence on the heat transfer, but has more influence on the total pressure loss. When the intercooler with special flow structure and layout for marine gas turbine is designed, inlet flow non-uniformity should be fully considered and the total pressure loss should be corrected based on experiments.

Author(s):  
Maxime Lecoq ◽  
Nicholas Grech ◽  
Pavlos K. Zachos ◽  
Vassilios Pachidis

Aero-gas turbine engines with a mixed exhaust configuration offer significant benefits to the cycle efficiency relative to separate exhaust systems, such as increase in gross thrust and a reduction in fan pressure ratio required. A number of military and civil engines have a single mixed exhaust system designed to mix out the bypass and core streams. To reduce mixing losses, the two streams are designed to have similar total pressures. In design point whole engine performance solvers, a mixed exhaust is modelled using simple assumptions; momentum balance and a percentage total pressure loss. However at far off-design conditions such as windmilling and altitude relights, the bypass and core streams have very dissimilar total pressures and momentum, with the flow preferring to pass through the bypass duct, increasing drastically the bypass ratio. Mixing of highly dissimilar coaxial streams leads to complex turbulent flow fields for which the simple assumptions and models used in current performance solvers cease to be valid. The effect on simulation results is significant since the nozzle pressure affects critical aspects such as the fan operating point, and therefore the windmilling shaft speeds and air mass flow rates. This paper presents a numerical study on the performance of a lobed mixer under windmilling conditions. An analysis of the flow field is carried out at various total mixer pressure ratios, identifying the onset and nature of recirculation, the flow field characteristics, and the total pressure loss along the mixer as a function of the operating conditions. The data generated from the numerical simulations is used together with a probabilistic approach to generate a response surface in terms of the mass averaged percentage total pressure loss across the mixer, as a function of the engine operating point. This study offers an improved understanding on the complex flows that arise from mixing of highly dissimilar coaxial flows within an aero-gas turbine mixer environment. The total pressure response surface generated using this approach can be used as look-up data for the engine performance solver to include the effects of such turbulent mixing losses.


Author(s):  
Natalie R. Smith ◽  
Nicole L. Key

Blade row interactions drive the unsteady performance of high pressure compressors. Vane clocking is the relative circumferential positioning of consecutive stationary vane rows with the same vane count. By altering the upstream vane wake’s path with respect to the downstream vane, vane clocking changes the blade row interactions and results in a change in steady total pressure loss on the downstream vane. The open literature lacks a conclusive discussion of the flow physics governing these interactions in compressors. This paper presents the details of a comprehensive vane clocking study on the embedded stage of the Purdue 3-stage axial compressor. The steady loss results, including radial total pressure profiles and surface flow visualization, suggest a shift in the Stator 2 corner separations occurs between clocking configurations associated with the maximum and minimum total pressure loss. To better understand the flow mechanisms driving the vane clocking effects on the steady Stator 2 performance, time-resolved interrogations of the Stator 2 inlet flow field, surface pressure unsteadiness, and boundary layer response were conducted. The Stator 2 surface flows, both pressure unsteadiness and boundary layer transition, are influenced by vane clocking and interactions between Rotor 1 and Rotor 2, but neither of these results indicate a cause for the change in steady total pressure loss. Moreover, they are a result of upstream changes in the flow field: the interaction between the Stator 1 wake and Rotor 2 results in a circumferentially varying pattern which alters the inlet flow field for the downstream row, including the unsteadiness and frequency content in the tip and hub regions. Therefore, under different clocking configurations, Stator 2 experiences significantly different inlet blockage and unsteadiness from the Rotor 2 tip leakage flow and hub corner separation, which, in turn, shifts the radial blade loading distribution and subsequent loss development of Stator 2.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Natalie R. Smith ◽  
Nicole L. Key

Blade row interactions drive the unsteady performance of high-pressure compressors. Vane clocking is the relative circumferential positioning of consecutive stationary vane rows with the same vane count. By altering the upstream vane wake's path with respect to the downstream vane, vane clocking changes the blade row interactions and results in a change in steady total pressure loss on the downstream vane. The open literature lacks a conclusive discussion of the flow physics governing these interactions in compressors. This paper presents the details of a comprehensive vane clocking study on the embedded stage of the Purdue three-stage axial compressor. The steady loss results, including radial total pressure profiles and surface flow visualization, suggest a shift in the stator 2 corner separations occurs between clocking configurations associated with the maximum and minimum total pressure loss. To better understand the flow mechanisms driving the vane clocking effects on the steady stator 2 performance, time-resolved interrogations of the stator 2 inlet flow field, surface pressure unsteadiness, and boundary layer response were conducted. The stator 2 surface flows, both pressure unsteadiness and boundary layer transition, are influenced by vane clocking and interactions between rotor 1 and rotor 2, but neither of these results indicate a cause for the change in steady total pressure loss. Moreover, they are a result of upstream changes in the flow field: the interaction between the stator 1 wake and rotor 2 results in a circumferentially varying pattern which alters the inlet flow field for the downstream row, including the unsteadiness and frequency content in the tip and hub regions. Therefore, under different clocking configurations, stator 2 experiences significantly different inlet blockage and unsteadiness from the rotor 2 tip leakage flow and hub corner separation, which, in turn, shifts the radial blade loading distribution and subsequent loss development of stator 2.


Author(s):  
Feng-Shan Wang ◽  
Wen-Jun Kong ◽  
Bao-Rui Wang

A research program is in development in China as a demonstrator of combined cooling, heating and power system (CCHP). In this program, a micro gas turbine with net electrical output around 100kW is designed and developed. The combustor is designed for natural gas operation and oil fuel operation, respectively. In this paper, a prototype can combustor for the oil fuel was studied by the experiments. In this paper, the combustor was tested using the ambient pressure combustor test facility. The sensors were equipped to measure the combustion performance; the exhaust gas was sampled and analyzed by a gas analyzer device. From the tests and experiments, combustion efficiency, pattern factor at the exit, the surface temperature profile of the outer liner wall, the total pressure loss factor of the combustion chamber with and without burning, and the pollutants emission fraction at the combustor exit were obtained. It is also found that with increasing of the inlet temperature, the combustion efficiency and the total pressure loss factor increased, while the exit pattern factor coefficient reduced. The emissions of CO and unburned hydrogen carbon (UHC) significantly reduced, but the emission of NOx significantly increased.


2021 ◽  
Author(s):  
Feng Li ◽  
Zhao Liu ◽  
Zhenping Feng

Abstract The blade tip region of the shroud-less high-pressure gas turbine is exposed to an extremely operating condition with combined high temperature and high heat transfer coefficient. It is critical to design new tip structures and apply effective cooling method to protect the blade tip. Multi-cavity squealer tip has the potential to reduce the huge thermal loads and improve the aerodynamic performance of the blade tip region. In this paper, numerical simulations were performed to predict the aerothermal performance of the multi-cavity squealer tip in a heavy-duty gas turbine cascade. Different turbulence models were validated by comparing to the experimental data. It was found that results predicted by the shear-stress transport with the γ-Reθ transition model have the best precision. Then, the film cooling performance, the flow field in the tip gap and the leakage losses were presented with several different multi-cavity squealer tip structures, under various coolant to mainstream mass flow ratios (MFR) from 0.05% to 0.15%. The results show that the ribs in the multi-cavity squealer tip could change the flow structure in the tip gap for that they would block the coolant and the leakage flow. In this study, the case with one-cavity (1C) achieves the best film cooling performance under a lower MFR. However, the cases with multi-cavity (2C, 3C, 4C) show higher film cooling effectiveness under a higher MFR of 0.15%, which are 32.6%%, 34.2%% and 41.0% higher than that of the 1C case. For the aerodynamic performance, the case with single-cavity has the largest total pressure loss coefficient in all MFR studied, whereas the case with two-cavity obtains the smallest total pressure loss coefficient, which is 7.6% lower than that of the 1C case.


2021 ◽  
Author(s):  
Juan He ◽  
Qinghua Deng ◽  
Zhenping Feng

Abstract Double wall cooling, consisting of internal impingement cooling and external film cooling, is believed to be the most advanced technique in modern turbine blades cooling. In this paper, to improve the uniformity of temperature distribution, a flat plate double wall cooling model with gradient diameter of film and impingement holes was proposed, and the heat transfer and flow characteristics were investigated by solving steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with SST k-ω turbulence model. The influence of gradient diameter on overall cooling effectiveness and total pressure loss was studied by comparing with the uniform pattern at the blowing ratios ranging from 0.5 to 2. For gradient diameter of film hole patterns, results show that −10% film pattern always has the lowest film flow non-uniformity coefficient. The laterally averaged overall cooling effectiveness of uniform pattern lies between that of +10% and −10% film patterns, but the intersection of three patterns moves upstream from the middle of flow direction with the increase of blowing ratio. Therefore, the −10% film pattern exerts the highest area averaged cooling effectiveness, which is improved by up to 1.6% and 1% at BR = 0.5 and 1 respectively compared with a uniform pattern. However, at higher blowing ratios, the +10% film pattern maintains higher cooling effectiveness and lower total pressure loss. For gradient diameter of impingement hole patterns, the intersection of laterally averaged overall cooling effectiveness in three patterns is located near the middle of flow direction under all blowing ratios. The uniform pattern has the highest area averaged cooling effectiveness and the smallest non-uniform coefficient, but the −10% jet pattern has advantages of reducing pressure loss, especially in the laminated loss.


Author(s):  
Ronald S. LaFleur

The iceformation design method generates an endwall contour, altering the secondary flows that produce elevated endwall heat transfer load and total pressure losses. Iceformation is an analog to regions of metal melting where a hot fluid alters the isothermal surface shape of a part as it is maintained by a cooling fluid. The passage flow, heat transfer and geometry evolve together under the constraints of flow and thermal boundary conditions. The iceformation concept is not media dependent and can be used in analogous flows and materials to evolve novel boundary shapes. In the past, this method has been shown to reduce aerodynamic drag and total pressure loss in flows such as diffusers and cylinder/endwall junctures. A prior paper [1] showed that the Reynolds number matched iceform geometry had a 24% lower average endwall heat transfer than the rotationally symmetric endwall geometry of the Energy Efficiency Engine (E3). Comparisons were made between three endwall geometries: the ‘iceform’, the ‘E3’ and the ‘flat’ as a limiting case of the endwall design space. This paper adds to the iceformation design record by reporting the endwall aerodynamic performances. Second vane exit flow velocities and pressures were measured using an automated 2-D traverse of a 1.2 mm diameter five-hole probe. Exit plane maps for the three endwall geometries are presented showing the details of the total pressure coefficient contours and the velocity vectors. The formation of secondary flow vortices is shown in the exit plane and this results in an impact on exit plane total pressure loss distribution, off-design over- and under-turning of the exit flow. The exit plane contours are integrated to form overall measures of the total pressure loss. Relative to the E3 endwall, the iceform endwall has a slightly higher total pressure loss attributed to higher dissipation of the secondary flow within the passage. The iceform endwall has a closer-to-design exit flow pattern than the E3 endwall.


2014 ◽  
Vol 716-717 ◽  
pp. 711-716
Author(s):  
Jie Yu ◽  
Xiong Chen ◽  
Hong Wen Li

In order to study the swirl flow characteristics in the solid fuel ramjet chamber, a new type of annular vane swirler with NACA airfoil is designed. The cold swirl flow field in the chamber is numerically simulated with different camber and t attack angle, while the swirl number , swirl flow field structure, total pressure recovery coefficient were studied. According to numerical simulation result, the main factors in swirl number are camber and angle of attack, the greater angle of attack, the greater the camber ,the stronger swirl will be. Results show that the total pressure loss is mainly concentrated in the inlet section, the total pressure loss cause by vane swirler is small. Radial velocity gradient exists in swirling flow, and increases with the swirl number. With the influence of centrifugal force and combustion chamber structure, the radial velocity gradient increases.


Author(s):  
Kenta Mizutori ◽  
Koji Fukudome ◽  
Makoto Yamamoto ◽  
Masaya Suzuki

Abstract We performed numerical simulation to understand deposition phenomena on high-pressure turbine vane. Several deposition models were compared and the OSU model showed good adaptation to any flow field and material, so it was implemented on UPACS. After the implementation, the simulations of deposition phenomenon in several cases of the flow field were conducted. From the results, particles adhere on the leading edge and the trailing edge side of the pressure surface. Also, the calculation of the total pressure loss coefficient was conducted after computing the flow field after deposition. The total pressure loss coefficient increased after deposition and it was revealed that the deposition deteriorates aerodynamic performance.


Author(s):  
F. E. Ames ◽  
J. D. Johnson ◽  
N. J. Fiala

Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a fully loaded vane profile in a large scale low speed cascade facility. Exit surveys have been taken over a four-to-one range in Reynolds numbers based on exit conditions and for both a low turbulence condition and a high turbulence condition. The high turbulence condition was generated using a mock aero-derivative combustor. Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at two stations representing axial chord spacings of 0.25 and 0.50. Substantial differences in the level of losses, distribution of losses, and secondary flow vectors are seen with the different turbulence conditions and at the different Reynolds numbers. The higher turbulence condition produces a significantly broader wake than the low turbulence case and shows a measurable total pressure loss in the region outside the wakes. Generally, total pressure losses are about 0.02 greater for the high turbulence case compared with the low turbulence case primarily due to the state of the suction surface boundary layers. Losses decrease moderately with increasing Reynolds number. Cascade inlet velocity distributions have been previously documented in an endwall heat transfer study of this same geometry. These exit survey measurements support our understanding of the endwall heat transfer distributions, the secondary flows in the passage, and the origin of losses.


Sign in / Sign up

Export Citation Format

Share Document