Nitric Oxide Predictions for Low NOx Radial Swirlers With Central Fuel Injection Using CFD

Author(s):  
Phil T. King ◽  
Gordon E. Andrews ◽  
Mohamed M. Pourkashanian ◽  
Andy C. McIntosh

A radial swirl low NOx combustor was investigated using CFD at 0.5 equivalence ratio and 600K inlet temperature at 1 bar. The equilibrium pdf combustion model using 16 species chemistry was shown to give a slightly improved prediction for the temperature distribution, but a poorer prediction for the CO distribution, over similar work using the flamelet model with 53 species chemistry. The NOx model was applied as a post-processing application and was shown to give a vastly superior result for the equilibrium pdf model using 16 species chemistry over the flamelet model using 53 species chemistry. Various NOx model configurations were tested and it was shown that only the mixture fraction based turbulence chemistry interaction model was able to provide a good result and all other models drastically under-predicted the peak nitric oxide levels. Combustion model predicted O modeling with excluded and combustion model predicted OH modeling were both shown to give a good match against measurements for the peak nitric oxide levels within the combustor when using mixture fraction based turbulence chemistry interaction.

Author(s):  
Phil T. King ◽  
T. B. Mat Lazim ◽  
Gordon E. Andrews ◽  
Mohamed M. Pourkashanian ◽  
Andy C. McIntosh

A double contra-rotating axial swirler was investigated at 0.38 equivalence ratio and 600K inlet temperature at 1 bar, both experimentally and using CFD. Natural gas fuel was injected from between the two contra-rotating flows. The experimental results showed that whilst the NOx emissions were relatively high, the system has excellent flame stability characteristics meaning the flame could be maintained at very low fuel-air ratios, down to an equivalence ratio of around 0.28. CFD predictions were carried out using the equilibrium pdf combustion model alongside the partially premixed combustion model using default model constants, and the NOx model was applied as a post-processing application. The results showed that whilst the location and shape of the flame and the combustor fuel-air distribution could not be precisely captured, the peak temperature, CO, UHC and NOx levels were correctly predicted. The influence of the turbulent Schmidt number, Sct, was therefore investigated in an attempt to improve the predictions. Lower values offered an improvement in the fuel-air mixing predictions, but not in the combustion predictions, where the peak flame temperature could only be predicted correctly when using the default value of Sct = 0.85. This indicates that the use of a universal turbulent Schmidt number for both the fuel-air mixing and combustion models may not be suitable for the present swirler and combustor configuration, therefore future work will look to use a separate value of Sct for the mixture fraction than for the pdf combustion models.


Author(s):  
André Perpignan V. de Campos ◽  
Fernando L. Sacomano Filho ◽  
Guenther C. Krieger Filho

Gas turbines are reliable energy conversion systems since they are able to operate with variable fuels and independently from seasonal natural changes. Within that reality, micro gas turbines have been increasing the importance of its usage on the onsite generation. Comparatively, less research has been done, leaving more room for improvements in this class of gas turbines. Focusing on the study of a flexible micro turbine set, this work is part of the development of a low cost electric generation micro turbine, which is capable of burning natural gas, LPG and ethanol. It is composed of an originally automotive turbocompressor, a combustion chamber specifically designed for this application, as well as a single stage axial power turbine. The combustion chamber is a reversed flow type and has a swirl stabilized combustor. This paper is dedicated to the diagnosis of the natural gas combustion in this chamber using computational fluid dynamics techniques compared to measured experimental data of temperature inside the combustion chamber. The study emphasizes the near inner wall temperature, turbine inlet temperature and dilution holes effectiveness. The calculation was conducted with the Reynolds Stress turbulence model coupled with the conventional β-PDF equilibrium along with mixture fraction transport combustion model. Thermal radiation was also considered. Reasonable agreement between experimental data and computational simulations was achieved, providing confidence on the phenomena observed on the simulations, which enabled the design improvement suggestions and analysis included in this work.


Author(s):  
Wengang Li ◽  
Yinli Xiao ◽  
Yipin Lu ◽  
Zhibo Cao ◽  
Juan Wu

For the purpose of providing the scientific insights to combustion characteristics of spray jet, numerical calculations of reacting and non-reacting spray cases are performed for ECN (engine combustion network) Spray A (n-dodecane spray combustion) which coupled finite chemistry combustion model PaSR and detailed chemical reaction kinetics based on OpenFOAM. The applicability and accuracy of the spray model is verified in the non-reacting spray case, and it is found that the predicted spray characteristics such as the penetration length of liquid and vapor and the mixture fraction are in good agreement with the test results. The two processes of low-temperature reaction and high-temperature ignition experienced by n-dodecane spray ignition are analyzed in reacting spray case, and it is found that the low-temperature reaction continues to exothermic before high-temperature ignition, and continues to proceed stably after high-temperature ignition, which promotes high-temperature ignition and flame stability. Finally, the effects of different fuel injection pressures on ignition delay time and flame lift-off length are studied.


1975 ◽  
Vol 189 (1) ◽  
pp. 497-505 ◽  
Author(s):  
R. D. Wing

Cyclic combustion variations have been demonstrated to exist in a direct injection Diesel engine to a surprisingly large extent. With the aid of an on-line computer engine-test facility statistical and correlation analyses were carried out to verify a strong relationship between the cyclic combustion variations and variations in the timing of fuel injection. The importance of these cyclic variations in the reduction of nitric oxide emissions from the engine is shown by experimental results and computer combustion model predictions. The overall effect on nitric oxide emissions is, however, small over most of the operating range of the engine.


Author(s):  
M Hossain ◽  
W Malalasekera

The objective of the current work is to assess the performance of different combustion models in predicting turbulent non-premixed combustion in conjunction with the k-∊ turbulence model. The laminar flamelet, equilibrium chemistry, constrained equilibrium chemistry, and flame sheet models are applied to simulate combustion in a CH4/H2 bluff-body flame experimentally studied by the University of Sydney. The computational results are compared to experimental values of mixture fraction, temperature, and constituent mass fractions. The comparison shows that the laminar flamelet model performs better than other combustion models and mimics most of the significant features of the bluff-body flame.


Author(s):  
Phil T. King ◽  
Nick H. Escott ◽  
Gordon E. Andrews ◽  
Mohammed M. Pourkashanian ◽  
Andrew C. McIntosh

Radial swirlers with vane passage natural gas injection, similar to those used in some industrial low NOx gas turbines, were investigated for their flame structure both experimentally and using CFD. The radial swirler NOx emissions at 600K and 1 atmosphere pressure were shown to be 3–4 ppm at 15% oxygen at 1800K and 1–2 ppm at 1700K. These levels were similar to the best published low NOx emissions using any flame stabilizer design. A flame at O̸ = 0.5 and 600K air temperature was investigated for its structure using a 10mm OD water cooled gas sample probe with a 1mm gas sample inlet on the upstream side of the probe. This showed that the mixing in the vane passage and outlet duct was very good. The maximum unmixedness at the first traverse location, 10mm downstream of the dump expansion zone, was 20% of the mean and the unmixedness was less than 5% within 30mm from the dump expansion. The flame structure was shown to involve a thick turbulence reaction zone of about 100mm thickness to the 90% heat release point. The CFD predictions were made using the RSM and k-ε turbulence models and the flamelet combustion model with a strain rate library. The isothermal aerodynamics predictions were in good agreement with others for similar geometries. There was an inner and outer recirculation zone with a swirling shear layer between. The peak turbulent kinetic energy was predicted to be on the inside of the shear layer. The experimental results showed that the flame developed in this region of high turbulence and low axial velocities. The flamelet model was less successful at predicting the flame development. The NOx results were predicted to be 2ppm less than the experimental results, due to the shorter predicted heat release region with associated lower prompt NOx.


Author(s):  
Alessandro Soli ◽  
Ivan Langella ◽  
Zhi X. Chen

AbstractThe physical mechanism leading to flame local extinction remains a key issue to be further understood. An analysis of large eddy simulation (LES) data with presumed probability density function (PDF) based closure (Chen et al., 2020, Combust. Flame, vol. 212, pp. 415) indicated the presence of localised breaks of the flame front along the stoichiometric line. These observations and their relation to local quenching of burning fluid particles, together with the possible physical mechanisms and conditions allowing their appearance in LES with a simple flamelet model, are investigated in this work using a combined Lagrangian-Eulerian analysis. The Sidney/Sandia piloted jet flames with compositionally inhomogeneous inlet and increasing bulk speeds, amounting to respectively 70 and 90% of the experimental blow-off velocity, are used for this analysis. Passive flow tracers are first seeded in the inlet streams and tracked for their lifetime. The critical scenario observed in the Lagrangian analysis, i.e., burning particles crossing extinction holes on the stoichiometric iso-surface, is then investigated using the Eulerian control-volume approach. For the 70% blow-off case the observed flame front breaks/extinction holes are due to cold and inhomogeneous reactants that are cast onto the stoichiometric iso-surface by large vortices initiated in the jet/pilot shear layer. In this case an extinction hole forms only when the strain effect is accompanied by strong subgrid mixing. This mechanism is captured by the unstrained flamelets model due to the ability of the LES to resolve large-scale strain and considers the SGS mixture fraction variance weakening effect on the reaction rate through the flamelet manifold. Only at 90% blow-off speed the expected limitation of the underlying combustion model assumption become apparent, where the amount of local extinctions predicted by the LES is underestimated compared to the experiment. In this case flame front breaks are still observed in the LES and are caused by a stronger vortex/strain interaction yet without the aid of mixture fraction variance. The reasons for these different behaviours and their implications from a physical and modelling point of view are discussed in this study.


Author(s):  
Phil T. King ◽  
Gordon E. Andrews ◽  
Myeong N. Kim ◽  
Mohamed Pourkashanian ◽  
Andy C. McIntosh

A radial swirler with vane passage fuel injection using a radial fuel spoke with one fuel hole per passage was investigated using CFD at 0.5 equivalence ratio and 600K inlet temperature at 1 bar. Experimental measurements of the internal flame composition from water cooled gas sample probes were the experimental results used for comparison. Three combustion models were compared: flamelet with two difference kinetic schemes; PDF transport with two step chemistry and finite rate eddy dissipation model. Both models consistently underpredicted the turbulent flame thickness to 90% heat release by a factor of about 2. The PDF model with postprocessing NOx predictions over estimated the NOx emissions considerably and the best model was the flamelet model with full chemistry. The under prediction of the turbulent reaction zone thickness was concluded to be due to inadequate modelling of strained flame quenching for very lean flames with large laminar flame thickness and very low burning velocities. This flamelet model was applied to predict the influence of the radial swirler outlet geometry on the flame development, fuel and air mixing and NOx emissions. A dump expansion from the radial swirler outlet was compared with the addition of a shroud at the outlet and with the addition of a 60mm long outlet throat. The shroud was shown to increase the peak turbulence and confine it very close to the shroud lip. This improved the fuel and air mixing and lowered the predicted NOx from 2.7ppm to 1.2ppm with the shrouded swirler and 0.3ppm with the 60mm outlet throat and mixing length.


Author(s):  
Masoud Darbandi ◽  
Majid Ghafourizadeh ◽  
Gerry E. Schneider

A hybrid finite-element-volume FEV method is extended to simulate turbulent non-premixed propane air preheated flame in a minichannel. We use a detailed kinetics scheme, i.e. GRI mechanism 3.0, and the flamelet model to perform the combustion modeling. The turbulence-chemistry interaction is taken into account in this flamelet modeling using presumed shape probability density functions PDFs. Considering an upwind-biased physics for the current reacting flow, we implement the physical influence upwinding scheme PIS to estimate the cell-face mixture fraction variance in this study. To close the turbulence closure, we employ the two-equation standard κ-ε turbulence model incorporated with suitable wall functions. Supposing an optically thin limit, it needs to take into account radiation effects of the most important radiating species in the current modeling. Despite facing with so many flame instabilities in such small size configuration, the current method performs suitably with proper convergence, and the encountered instabilities are damped out automatically. Comparing with the experimental measurements, the current extended method accurately predicts the flame structure in the minichannel configuration.


2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


Sign in / Sign up

Export Citation Format

Share Document