Modelling and Assessment of Compressor Faults on Marine Gas Turbines

Author(s):  
I. Roumeliotis ◽  
N. Aretakis ◽  
K. Mathioudakis ◽  
E. A. Yfantis

Any prime mover exhibits the effects of wear and tear over time, especially when operating in a hostile environment. Marine gas turbines operation in the hostile marine environment results in the degradation of their performance characteristics. A method for predicting the effects of common compressor degradation mechanisms on the engine operation and performance by exploiting the “zooming” feature of current performance modelling techniques is presented. Specifically a 0D engine performance model is coupled with a higher fidelity compressor model which is based on the “stage stacking” method. In this way the compressor faults can be simulated in a physical meaningful way and the overall engine performance and off design operation of a faulty engine can be predicted. The method is applied to the case of a twin shaft engine, a configuration that is commonly used for marine propulsion. In the case of marine propulsion the operating profile includes a large portion of off-design operation, thus in order to assess the engine’s faults effects, the engine operation should be examined with respect to the marine vessel’s operation. For this reason, the engine performance model is coupled to a marine vessel’s mission model that evaluates the prime mover’s operating conditions. In this way the effect of a faulty engine on vessels’ mission parameters like overall fuel consumption, maximum speed, pollutant emissions and mission duration can be quantified.

Author(s):  
Matthias Mu¨ller ◽  
Stephan Staudacher ◽  
Winfried-Hagen Friedl ◽  
Rene´ Ko¨hler ◽  
Matthias Weißschuh

The maintenance and reliability of aircraft engines is strongly influenced by the environmental and operating conditions they are subjected to in service. A probabilistic tool has been developed to predict shop visit arisings and respective maintenance workscope that depends on these factors. The tool contains a performance model of the engine and a number of physics-based damage mechanisms (at piece part level). The performance model includes variation of performance relevant parameters due to production scatter and delivers the conditions to determine the deterioration of the individual parts. Shop visit maintenance is modeled as a result of limitations to engine operation, e.g. reaching TGT limit, or mechanical deterioration. The influence of maintenance actions on engine performance is determined on component basis. The maintenance strategy can consist of proactive and reactive maintenance elements. The decision of repair or replacement of any single part is implemented through a sum of different logic rules in the model. The loading capacity scatter depends on the engine type and is operator independent. It is represented via data-driven distribution functions, in which the probabilities of failure, repair and replacement for each part are specified depending on the number of reference flight cycles. The loading variation is considered through a physics-based cycle weighting. The developed tool runs a Monte Carlo simulation in which a fleet of engines is modeled through their respective lifetime of maintenance and performance deterioration. Using an example it is shown that the model can describe the effects of varying environmental and operating conditions on part damage, and therefore engine maintenance cost and reliability.


Author(s):  
K. Mathioudakis ◽  
A. Stamatis ◽  
A. Tsalavoutas ◽  
N. Aretakis

The paper discusses how the principles employed for monitoring the performance of gas turbines in industrial duty can be explained by using suitable Gas Turbine performance models. A particular performance model that can be used for educational purposes is presented. The model allows the presentation of basic rules of gas turbine engine behavior and helps understanding different aspects of its operation. It is equipped with a graphics interface, so it can present engine operating point data in a number of different ways: operating line, operating points of the components, variation of particular quantities with operating conditions etc. Its novel feature, compared to existing simulation programs, is that it can be used for studying cases of faulty engine operation. Faults can be implanted into different engine components and their impact on engine performance studied. The notion of fault signatures on measured quantities is clearly demonstrated. On the other hand, the model has a diagnostic capability, allowing the introduction of measurement data from faulty engines and providing a diagnosis, namely a picture of how the performance of engine components has deviated from nominal condition, and how this information gives the possibility for fault identification.


Author(s):  
Scott T. Cloyd ◽  
Arthur J. Harris

The gas turbine industry has adopted the practice of rating engine performance at ISO standard conditions; 15 degrees C, 1.033 ata, 100% methane fuel, and no inlet or exhaust system pressure losses with power output referenced to the generator terminals. (ISO, 1989) While these standards are useful in putting original equipment manufacturers’ (OEM’s) ratings on an equivalent basis it is not likely that an engine would be installed or tested under these types of conditions. To account for variations in engine operating conditions equipment manufacturers’ have utilized performance correction curves to show the influence of changing one operating parameter while holding all others constant. The purpose of this paper is to review the correction curves that are used for initial project application studies, and the variations to the curves that occur when a unit is put into service as a result of the methods used to control engine operation. Sample corrections curves and a brief explanation of the correction curves are presented to illustrate the variations in the curves. The paper also presents a new method for illustrating the influence of fuel heating value and composition on engine performance for natural gas and oil fuel. All data presented is for a single shaft, constant speed gas turbine. Two shaft or three shaft gas turbines will not have these correction curves.


2002 ◽  
Vol 30 (3) ◽  
pp. 204-218 ◽  
Author(s):  
K. Mathioudakis ◽  
A. Stamatis ◽  
A. Tsalavoutas ◽  
N. Aretakis

The paper discusses how performance models can be incorporated in education on the subject of gas turbine performance monitoring and diagnostics. A particular performance model, built for educational purposes, is employed to demonstrate the different aspects of this process. The way of building a model is discussed, in order to ensure the connection between the physical principles used for diagnostics and the structure of the software. The first aspect discussed is model usage for understanding gas turbine behaviour under different operating conditions. Understanding this behaviour is essential, in order to have the possibility to distinguish between operation in ‘healthy’ and ‘faulty’ engine condition. A graphics interface is used to present information in different ways such as operating line, operating points on component maps, interrelation between performance variables and parameters. The way of studying faulty engine operation is then presented, featuring a novel comparison to existing simulation programs. Faults can be implanted into different engine components and their impact on engine performance studied. The notion of fault signatures on measured quantities is explained. The model has also a diagnostic capability, allowing the introduction of measurement data from faulty engines and providing a diagnosis, namely a picture of how the performance of engine components has deviated from a ‘healthy’ condition


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


Author(s):  
Ioannis Vlaskos ◽  
Ennio Codan ◽  
Nikolaos Alexandrakis ◽  
George Papalambrou ◽  
Marios Ioannou ◽  
...  

The paper describes the design process for a controlled pulse turbocharging system (CPT) on a 5 cylinder 4-stroke marine engine and highlights the potential for improved engine performance as well as reduced smoke emissions under steady state and transient operating conditions, as offered by the following technologies: • controlled pulse turbocharging, • high pressure air injection onto the compressor impeller as well as into the air receiver, and • an electronic engine control system, including a hydraulic powered electric actuator. Calibrated engine simulation computer models based on the results of tests performed on the engine in its baseline configuration were used to design the CPT components. Various engine tests with CPT under steady state and transient operating conditions show the engine optimization process and how the above-mentioned technologies benefit engine behavior in both generator and propeller law operation.


Author(s):  
S. Eshati ◽  
M. F. Abdul Ghafir ◽  
P. Laskaridis ◽  
Y. G. Li

This paper investigates the relationship between design parameters and creep life consumption of stationary gas turbines using a physics based life model. A representative thermodynamic performance model is used to simulate engine performance. The output from the performance model is used as an input to the physics based model. The model consists of blade sizing model which sizes the HPT blade using the constant nozzle method, mechanical stress model which performs the stress analysis, thermal model which performs thermal analysis by considering the radial distribution of gas temperature, and creep model which using the Larson-miller parameter to calculate the lowest blade creep life. The effect of different parameters including radial temperature distortion factor (RTDF), material properties, cooling effectiveness and turbine entry temperatures (TET) is investigated. The results show that different design parameter combined with a change in operating conditions can significantly affect the creep life of the HPT blade and the location along the span of the blade where the failure could occur. Using lower RTDF the lowest creep life is located at the lower section of the span, whereas at higher RTDF the lowest creep life is located at the upper side of the span. It also shows that at different cooling effectiveness and TET for both materials the lowest blade creep life is located between the mid and the tip of the span. The physics based model was found to be simple and useful tool to investigate the impact of the above parameters on creep life.


Author(s):  
Jude Iyinbor

The optimisation of engine performance by predictive means can help save cost and reduce environmental pollution. This can be achieved by developing a performance model which depicts the operating conditions of a given engine. Such models can also be used for diagnostic and prognostic purposes. Creating such models requires a method that can cope with the lack of component parameters and some important measurement data. This kind of method is said to be adaptive since it predicts unknown component parameters that match available target measurement data. In this paper an industrial aeroderivative gas turbine has been modelled at design and off-design points using an adaptation approach. At design point, a sensitivity analysis has been used to evaluate the relationships between the available target performance parameters and the unknown component parameters. This ensured the proper selection of parameters for the adaptation process which led to a minimisation of the adaptation error and a comprehensive prediction of the unknown component and available target parameters. At off-design point, the adaptation process predicted component map scaling factors necessary to match available off-design point performance data.


Author(s):  
Rajiv Mongia ◽  
Robert Dibble ◽  
Jeff Lovett

Lean premixed combustion has emerged as a method of achieving low pollutant emissions from gas turbines. A common problem of lean premixed combustion is combustion instability. As conditions inside lean premixed combustors approach the lean flammability limit, large pressure variations are encountered. As a consequence, certain desirable gas turbine operating regimes are not approachable. In minimizing these regimes, combustor designers must rely upon trial and error because combustion instabilities are not well understood (and thus difficult to model). When they occur, pressure oscillations in the combustor can induce fluctuations in fuel mole fraction that can augment the pressure oscillations (undesirable) or dampen the pressure oscillations (desirable). In this paper, we demonstrate a method for measuring the fuel mole fraction oscillations which occur in the premixing section during combustion instabilities produced in the combustor that is downstream of the premixer. The fuel mole fraction in the premixer is measured with kHz resolution by the absorption of light from a 3.39 μm He-Ne laser. A sudden expansion combustor is constructed to demonstrate this fuel mole fraction measurement technique. Under several operating conditions, we measure significant fuel mole fraction fluctuations that are caused by pressure oscillations in the combustion chamber. Since the fuel mole fraction is sampled continuously, a power spectrum is easily generated. The fuel mole fraction power spectrum clearly indicates fuel mole fraction fluctuation frequencies are the same as the pressure fluctuation frequencies under some operating conditions.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


Sign in / Sign up

Export Citation Format

Share Document