Heat Transfer Measurements in Rotating Blade-Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers

Author(s):  
Akhilesh Rallabandi ◽  
Jiang Lei ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

Flow in the internal three-pass serpentine rib turbulated passages of an advanced high pressure rotor blade is simulated on a 1:1 scale in the laboratory. Tests to measure the effect of rotation on the Nusselt number are conducted at rotation numbers up to 0.4 and Reynolds numbers from 75,000 to 165,000. To achieve this similitude, pressurized Freon R134a vapor is utilized as the working fluid. Experimental heat transfer coefficient measurements are made using the copperplate regional average method. Regional heat transfer coefficients are correlated with rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Strikingly, a significant deterioration in heat transfer is noticed in the “hub” region — between the radially inward second pass and the radially outward third pass. This heat transfer reduction is critical for turbine cooling designs.

2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Akhilesh Rallabandi ◽  
Jiang Lei ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

Flow in the internal three-pass serpentine rib turbulated passages of an advanced high pressure rotor blade is simulated on a 1:1 scale in the laboratory. Tests to measure the effect of rotation on the Nusselt number are conducted at rotation numbers up to 0.4 and Reynolds numbers from 75,000 to 165,000. To achieve this similitude, pressurized Freon R134a vapor is utilized as the working fluid. Experimental heat transfer coefficient measurements are made using the copper-plate regional average method. Regional heat transfer coefficients are correlated with rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Strikingly, a significant deterioration in heat transfer is noticed in the “hub” region—between the radially inward second pass and the radially outward third pass. This heat transfer reduction is critical for turbine cooling designs.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

This paper experimentally investigates the effect of rotation on heat transfer in typical turbine blade serpentine coolant passage with ribbed walls at low Mach numbers. To achieve the low Mach number (around 0.01) condition, pressurized Freon R-134a vapor is utilized as the working fluid. The flow in the first passage is radial outward, after the 180 deg tip turn the flow is radial inward to the second passage, and after the 180 deg hub turn the flow is radial outward to the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers up to 0.6 and Reynolds numbers from 30,000 to 70,000. Heat transfer coefficients were measured using the thermocouples-copper-plate-heater regional average method. Heat transfer results are obtained over a wide range of Reynolds numbers and rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Regional heat transfer coefficients are correlated with Reynolds numbers for nonrotation and with rotation numbers for rotating condition, respectively. The results can be useful for understanding real rotor blade coolant passage heat transfer under low Mach number, medium–high Reynolds number, and high rotation number conditions.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

This paper experimentally investigates the effect of rotation on heat transfer in typical turbine blade serpentine coolant passage with ribbed walls at low Mach numbers. To achieve the low Mach number (around 0.01) condition, pressurized Freon R-134a vapor is utilized as the working fluid. The flow in the first passage is radial outward, after the 180° tip turn the flow is radial inward to the second passage, and after the 180° hub turn the flow is radial outward to the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers up to 0.6 and Reynolds numbers from 30,000 to 70,000. Heat transfer coefficients were measured using the thermocouples-copper-plate-heater regional average method. Heat transfer results are obtained over a wide range of Reynolds numbers and rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Regional heat transfer coefficients are correlated with Reynolds numbers for non-rotation and with rotation numbers for rotating condition, respectively. The results can be useful for understanding real rotor blade coolant passage heat transfer under low Mach number, medium-high Reynolds number and high rotation number conditions.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Huitao Yang ◽  
Je-Chin Han

Systematic experiments are conducted to measure heat transfer enhancement and pressure loss characteristics on a square channel (simulating a gas turbine blade cooling passage) with two opposite surfaces roughened by 45 deg parallel ribs. Copper plates fitted with a silicone heater and instrumented with thermocouples are used to measure regionally averaged local heat transfer coefficients. Reynolds numbers studied in the channel range from 30,000 to 400,000. The rib height (e) to hydraulic diameter (D) ratio ranges from 0.1 to 0.18. The rib spacing (p) to height ratio (p/e) ranges from 5 to 10. Results show higher heat transfer coefficients at smaller values of p/e and larger values of e/D, though at the cost of higher friction losses. Results also indicate that the thermal performance of the ribbed channel falls with increasing Reynolds numbers. Correlations predicting Nusselt number (Nu) and friction factor (f¯) as a function of p/e, e/D, and Re are developed. Also developed are correlations for R and G (friction and heat transfer roughness functions, respectively) as a function of the roughness Reynolds number (e+), p/e, and e/D.


2020 ◽  
Vol 10 (15) ◽  
pp. 5225
Author(s):  
Barbara Arevalo-Torres ◽  
Jose L. Lopez-Salinas ◽  
Alejandro J. García-Cuéllar

The curved geometry of a coiled flow inverter (CFI) promotes chaotic mixing through a combination of coils and bends. Besides the heat exchanger geometry, the heat transfer can be enhanced by improving the thermophysical properties of the working fluid. In this work, aqueous solutions of dispersed TiO2 nanometer-sized particles (i.e., nanofluids) were prepared and characterized, and their effects on heat transfer were experimentally investigated in a CFI heat exchanger inserted in a forced convective thermal loop. The physical and transport properties of the nanofluids were measured within the temperature and volume concentration domains. The convective heat transfer coefficients were obtained at Reynolds numbers (NRe) and TiO2 nanoparticle volume concentrations ranging from 1400 to 9500 and 0–1.5 v/v%, respectively. The Nusselt number (NNu) in the CFI containing 1.0 v/v% nanofluid was 41–52% higher than in the CFI containing pure base fluid (i.e., water), while the 1.5 v/v% nanofluid increased the NNu by 4–8% compared to water. Two new correlations to predict the NNu of TiO2–water nanofluids in the CFI at Reynolds numbers of 1400 ≤ NRe ≤ 9500 and nanoparticle volume concentrations ranges of 0.2–1.0 v/v% and 0.2–1.5 v/v% are proposed.


1981 ◽  
Vol 103 (3) ◽  
pp. 441-447 ◽  
Author(s):  
E. M. Sparrow ◽  
F. Samie ◽  
S. C. Lau

Wind tunnel experiments were performed to determine heat transfer coefficients and fluid flow patterns for a thermally active surface elevated above a parallel host surface. The step-like blockage associated with the elevation causes flow separation and recirculation on the forward portion of the thermally active surface. Four parameters were varied during the course of the experiments, including the angle of attack of the oncoming airflow relative to the surface, the step height, the extent of the host surface which frames the active surface (i.e., the skirt width), and the Reynolds number. Flow visualization studies, performed with the oil-lampblack technique, showed that the streamwise extent of the separation zone increases with decreasing angle of attack, with larger step heights and skirt widths, and at higher Reynolds numbers. At larger angles of attack, separation does not occur. The experimentally determined heat transfer coefficients were found to increase markedly due to the flow separation, and separation-related enhancements as large as a factor of two were encountered. The enhancement was accentuated at small angles of attack, at large step heights and skirt widths, and at high Reynolds numbers. A main finding of the study is that the separation-affected heat transfer coefficients are generally greater than those for no separation, so that the use of the latter may underestimate the heat transfer rates. For an application such as a retrofit solar collector, such an underestimation of the wind-related heat loss would yield an optimistic prediction of the collector efficiency.


Author(s):  
Wen-Lung Fu ◽  
Lesley M. Wright ◽  
Je-Chin Han

This paper reports the heat transfer coefficients in two-pass rotating rectangular channels (AR=1:2 and AR=1:4) with rib roughened walls. Rib turbulators are placed on the leading and trailing walls of the two-pass channel at an angle of 45° to the flow direction. Four Reynolds numbers are considered from 5000 to 40000. The rotation numbers vary from 0.0 to 0.3. The ribs have a 1.59 by 1.59 mm square cross section. The rib height-to-hydraulic diameter ratios (e/Dh) are 0.094 and 0.078 for AR=1:2 and AR=1:4, respectively. The rib pitch-to-height ratio (P/e) is 10 for both cases, and the inlet coolant-to-wall density ratio (Δρ/ρ) is maintained around 0.115. For each channel, two channel orientation are studied, 90° and 45° with respect to the plane of rotation. The results show that the rotation effect increased the heat transfer on trailing wall in the first pass, but reduced the heat transfer on the leading wall. For AR=1:4, the minimum heat transfer coefficient was 25% of the stationary value. However, the rotation effect reduced the heat transfer difference between the leading and trailing walls in the second pass.


1985 ◽  
Vol 107 (2) ◽  
pp. 327-333 ◽  
Author(s):  
R. Ghetzler ◽  
J. C. Chato ◽  
J. M. Crowley

Heat transfer and friction factors were experimentally determined in a scale model of high-voltage, pipe-type underground transmission systems for Reynolds numbers to 8000. Dielectric insulating oil (Sun No. 4) with a Prandtl number of 120 was utilized for the coolant. Two ratios of cable to enclosure pipe diameters, corresponding to standard and oversize enclosure pipes, were examined for the three-cable system. Helical wire wrap was included to simulate protective skid wires around the cables. Three configurations of cable positioning were considered—open triangular, close triangular, and cradled. A method of generalizing the heat transfer coefficients was developed and tested for rough pipe cables based on extensions of previous work in the literature. The generalized correlation, without correction factors, was found to be applicable only in two cases with appropriate flow pattens and geometries. Heat transfer to the pipe wall could be correlated by standard methods in the high Reynolds number range.


2005 ◽  
Vol 127 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Wen-Lung Fu ◽  
Lesley M. Wright ◽  
Je-Chin Han

This paper reports the heat transfer coefficients in two-pass rotating rectangular channels [aspect ratio (AR=1:2 and AR=1:4)] with smooth walls. The experiments are conducted at four Reynolds numbers: 5000, 10,000, 25,000, and 40,000. The rotation numbers vary from 0.0 to 0.21 and 0.0 to 0.3 for AR=1:2 and AR=1:4, respectively. For each channel, two channel orientations are studied, 90° and 45° with respect to the plane of rotation. The results showed that the 180° sharp turn significantly enhanced heat transfer on both the leading and trailing surfaces in the turn region for both nonrotating and rotating channels. The results also showed that the rotation effect increased the heat transfer on the trailing surface in the first pass, but reduced the heat transfer on the leading surface. However, the heat transfer difference between the leading and trailing walls in the second pass is relatively small compared to the first pass due to strong turn effect.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Nawaf Alkhamis ◽  
Je-Chin Han

Experiments to determine heat transfer coefficients and friction factors are conducted on a stationary 45 deg parallel rib-roughened square channel, which simulates a turbine blade internal coolant passage. Copper plates fitted with silicone heaters and thermocouples are used to measure regionally averaged heat transfer coefficients. Reynolds numbers studied range from 30,000 to 400,000. The ribs studied have rounded (filleted) edges to account for manufacturing limitations of actual engine blades. The rib height (e) to hydraulic diameter (D) ratio (e/D) ranges from 0.1 to 0.2, while spacing (p) to height ratio (p/e) ranges from 5 to 10. Results indicate an increase in the heat transfer due to the ribs at the cost of a higher friction factor, especially at higher Reynolds numbers. Round-edged ribs experience a similar heat transfer coefficient and a lower friction factor compared with sharp-edged ribs, especially at higher values of the rib height. Correlations predicting Nu and f as a function of e/D, p/e, and Re are presented. Also presented are correlations for the heat transfer and friction roughness parameters (G and R, respectively).


Sign in / Sign up

Export Citation Format

Share Document