Ignition Delay Time Experiments for Natural Gas/Hydrogen Blends at Elevated Pressures

Author(s):  
Marissa L. Brower ◽  
Olivier Mathieu ◽  
Eric L. Petersen ◽  
Nicola Donohoe ◽  
Alexander Heufer ◽  
...  

Applications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. While the ignition delay times of hydrogen and of the individual hydrocarbons in natural gases can be considered well known, there have been few previous experimental studies into the effects of different levels of hydrogen on the ignition delay times of natural gases at gas turbine conditions. To examine the effects of hydrogen content at gas turbine conditions, shock-tube experiments were performed on nine mixtures of an L9 matrix. The L9 matrix was developed by varying four factors: natural gas higher-order hydrocarbon content of 0, 18.75, or 37.5%; hydrogen content of the total fuel mixture of 30, 60, or 80%; equivalence ratios of 0.3, 0.5, or 1; and pressures of 1, 10, or 30 atm. Temperatures ranged from 1092 K to 1722 K, and all mixtures were diluted in 90% Ar. Correlations for each mixture were developed from the ignition delay times and, using these correlations, a factor sensitivity analysis was performed. It was found that hydrogen played the most significant role in the ignition delay times of a mixture. Pressure was almost as important as hydrogen content, especially as temperature increased. Equivalence ratio was slightly more important than hydrocarbon content of the natural gas, but both were less important than pressure or hydrogen content. Comparison with a modern chemical kinetic model demonstrated that the model captures well the relative impacts of H2 content, temperature, and pressure, but some improvements are still needed in terms of absolute ignition delay times.

Author(s):  
Pierre A. Glaude ◽  
Rene´ Fournet ◽  
Roda Bounaceur ◽  
Michel Molie`re

Many investigations are currently carried out in order to reduce CO2 emissions in power generation. Among alternative fuels to natural gas and gasoil in gas turbine applications, dimethyl ether (DME; formula: CH3-O-CH3) represents a possible candidate in the next years. This chemical compound can be produced from natural gas or coal/biomass gasification. DME is a good substitute for gasoil in diesel engine. Its Lower Heating Value is close to that of ethanol but it offers some advantages compared to alcohols in terms of stability and miscibility with hydrocarbons. While numerous studies have been devoted to the combustion of DME in diesel engines, results are scarce as far as boilers and gas turbines are concerned. Some safety aspects must be addressed before feeding a combustion device with DME because of its low flash point (as low as −83°C), its low auto-ignition temperature and large domain of explosivity in air. As far as emissions are concerned, the existing literature shows that in non premixed flames, DME produces less NOx than ethane taken as parent molecular structure, based on an equivalent heat input to the burner. During a field test performed in a gas turbine, a change-over from methane to DME led to a higher fuel nozzle temperature but to a lower exhaust gas temperature. NOx emissions decreased over the whole range of heat input studied but a dramatic increase of CO emissions was observed. This work aims to study the combustion behavior of DME in gas turbine conditions with the help of a detailed kinetic modeling. Several important combustion parameters, such as the auto-ignition temperature (AIT), ignition delay times, laminar burning velocities of premixed flames, adiabatic flame temperatures, and the formation of pollutants like CO and NOx have been investigated. These data have been compared with those calculated in the case of methane combustion. The model was built starting from a well validated mechanism taken from the literature and already used to predict the behavior of other alternative fuels. In flame conditions, DME forms formaldehyde as the major intermediate, the consumption of which leads in few steps to CO then CO2. The lower amount of CH2 radicals in comparison with methane flames seems to decrease the possibility of prompt-NO formation. This paper covers the low temperature oxidation chemistry of DME which is necessary to properly predict ignition temperatures and auto-ignition delay times that are important parameters for safety.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g., by cofiring. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular, ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation—in decentralized (microgas turbines) or centralized gas turbine units, neat, or cofired with gaseous fuels like natural gas (NG) and biogas—is discussed. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed, for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within computational fluid dynamics (CFD) codes. Therefore, a detailed experimental and modeling study of ethanol cofiring to NG will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel–air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of NG, ethanol, and ethanol cofired to NG.


Author(s):  
Andreas Koch ◽  
Clemens Naumann ◽  
Wolfgang Meier ◽  
Manfred Aigner

The objective of this work was the improvement of methods for predicting autoignition in turbulent flows of different natural gas mixtures and air. Measurements were performed in a mixing duct where fuel was laterally injected into a turbulent flow of preheated and pressurized air. To study the influence of higher order hydrocarbons on autoignition, natural gas was mixed with propane up to 20% by volume at pressures up to 15 bar. During a measurement cycle, the air temperature was increased until autoignition occurred. The ignition process was observed by high-speed imaging of the flame chemiluminescence. In order to attribute a residence time (ignition delay time) to the locations where autoignition was detected the flow field and its turbulent fluctuations were simulated by numerical codes. These residence times were compared to calculated ignition delay times using detailed chemical simulations. The measurement system and data evaluation procedure are described and preliminary results are presented. An increase in pressure and in fraction of propane in the natural gas both reduced the ignition delay time. The measured ignition delay times were systematically longer than the predicted ones for temperatures above 950 K. The results are important for the design process of gas turbine combustors and the studies also demonstrate a procedure for the validation of design tools under relevant conditions.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g. by co-firing. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation — in decentralized (micro gas turbines) or centralized gas turbine units, neat, or co-fired with gaseous fuels like natural gas and biogas — is discussed, besides its role within the transport sector. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed; for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within CFD (computational fluid dynamics) codes. Therefore, a detailed experimental and modeling study of ethanol co-firing to natural gas will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel-air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of natural gas, ethanol, and ethanol co-fired to natural gas.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Van Vang Le ◽  
Anh Tuan Hoang ◽  
Sandro Nižetić ◽  
Aykut I. Ölçer

Abstract Global concerns about CO2 levels in the atmosphere, energy security, and the depletion of fossil fuel supply have been the key motivation to develop bio-based fuel resources, which leads to promising and potential strategies of renewable and carbon-neutral biofuels. Among biofuels being strongly developed, 2,5-dimethylfuran (DMF) is a new alternative biofuel candidate since DMF could be synthesized from available and durable lignocellulosic biomass, as well as DMF's physicochemical properties were found to be similar to those of fossil fuels. Therefore, the comprehensive investigation on DMF is very essential before putting DMF into the commercial scale and the engine application. In this current work, the temporal evolutions of laminar flame characteristics including laminar burning velocities, unstretched flame propagation speed, and Schlieren images were critically reviewed based on the comparison of DMF with other fuels. Besides, flame instabilities were also evaluated in detail. Finally, ignition delay times were thoroughly analyzed with the variation of the initial parameters such as temperature, pressure, and equivalent ratio, suggesting that DMF could become the potential fuel for the spark ignition engine. In the future, the experimental studies on the real engines fueled with DMF should be carefully and completely performed to have a comprehensive evaluation of this promising biofuel class.


Author(s):  
David Beerer ◽  
Vincent McDonell ◽  
Scott Samuelsen ◽  
Leonard Angello

Compositional variation of global gas supplies is becoming a growing concern. Both the range and rate-of-change of this variation is expected to increase as global markets for Liquefied Natural Gas (LNG) continue to expand. Greater fuel composition variation poses increased operational risk to gas turbine engines employing lean premixed combustion systems. Information on ignition delay at high pressure and intermediate temperatures is valuable for lean premixed gas turbine design. In order to avoid autoignition of the fuel/air mixture within the premixer, the ignition delay time must be greater than the residence time. Evaluating the residence time is not a straight forward task because of the complex aerodynamics due to recirculation zones, separation regions, and boundary layers effects which may create regions where the local residence times may be longer than the bulk or average residence time. Additionally, reliable experiments on ignition delay at gas turbine conditions are difficult to conduct. Devices for testing include shock tubes, rapid compression machine and flow reactors. In a flow reactor ignition delay data are commonly determined by measuring the distance from the fuel injector to the reaction front (L) and dividing it by the bulk or average flow velocity (U) under steady flow conditions to obtain a bulk residence time which is assumed to be equal to the ignition delay time. However this method is susceptible to the same boundary layer effects or recirculation zones found in premixers. An alternative method for obtaining ignition delay data in a flow reactor is presented herein, where ignition delay times are obtained by measuring the time difference between fuel injection and ignition using high speed instrumentation. Ignition delay times for methane, ethane and propane at gas turbine conditions were in the range of 40–500 ms. The results obtained show excellent agreement with recently proposed chemical mechanisms for hydrocarbons at low temperature/high pressure conditions.


Author(s):  
Gilles Bourque ◽  
Darren Healy ◽  
Henry Curran ◽  
Christopher Zinner ◽  
Danielle Kalitan ◽  
...  

High-pressure experiments and chemical kinetics modeling were performed to generate a database and a chemical kinetic model that can characterize the combustion chemistry of methane-based fuel blends containing significant levels of heavy hydrocarbons (up to 37.5% by volume). Ignition delay times were measured in two different shock tubes and in a rapid compression machine at pressures up to 34 atm and temperatures from 740 to 1660 K. Laminar flame speeds were also measured at pressures up to 4 atm using a high-pressure vessel with optical access. Two different fuel blends containing ethane, propane, n-butane, and n-pentane added to methane were studied at equivalence ratios varying from lean (0.3) to rich (2.0). This paper represents the most comprehensive set of experimental ignition and laminar flame speed data available in the open literature for CH4/C2H6/C3H8/C4H10/C5H12 fuel blends with significant levels of C2+ hydrocarbons. Using these data, a detailed chemical kinetics model, based on current and recent work by the authors, was compiled and refined. The predictions of the model are very good over the entire range of ignition delay times, considering the fact that the data set is so thorough. Nonetheless, some improvements to the model can still be made with respect to ignition times at the lowest temperatures and for the laminar flame speeds at pressures above 1 atm and rich conditions.


2019 ◽  
Vol 44 (33) ◽  
pp. 18573-18585 ◽  
Author(s):  
Yuanjie Jiang ◽  
Gonzalo del Alamo ◽  
Andrea Gruber ◽  
Mirko R. Bothien ◽  
Kalyanasundaram Seshadri ◽  
...  

Author(s):  
D. J. Beerer ◽  
V. G. McDonell

With the need to reduce carbon emissions such as CO2, hydrogen is being examined as potential “clean” fuel for the future. One potential strategy is lean premixed combustion, where the fuel and air are allowed to mix upstream before entering the combustor, which has been proven to curb NOx formation in natural gas fired engines. However, premixing hydrogen and air may increase the risk of autoignition before the combustor, resulting in serious engine damage. A flow reactor was set up to test the ignition delay time of hydrogen and air at temperatures relevant to gas turbine engine operations to determine maximum possible mixing times. The results were then compared to past experimental work and current computer simulations. The current study observed that ignition is very sensitive to the initial conditions. The ignition delay times follow the same general trend as seen in previous flow reactor studies: ignition within hundreds of milliseconds and relatively low activation energy. An experimentally derived correlation by Peschke and Spadaccini (1985, “Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values,” Research Project No. 2357-1, Report No. AP-4291) appears to best predict the observed ignition delay times. Homogenous gas phase kinetics simulations do not appear to describe ignition well in these intermediate temperatures. Therefore, at the moment, only the current empirical correlations should be used in predicting ignition delay at engine conditions for use in the design of gas turbine premixers. Additionally, fairly large safety factors should still be considered for any design to reduce any chance of autoignition within the premixer.


Sign in / Sign up

Export Citation Format

Share Document