DME as a Potential Alternative Fuel for Gas Turbines: A Numerical Approach to Combustion and Oxidation Kinetics

Author(s):  
Pierre A. Glaude ◽  
Rene´ Fournet ◽  
Roda Bounaceur ◽  
Michel Molie`re

Many investigations are currently carried out in order to reduce CO2 emissions in power generation. Among alternative fuels to natural gas and gasoil in gas turbine applications, dimethyl ether (DME; formula: CH3-O-CH3) represents a possible candidate in the next years. This chemical compound can be produced from natural gas or coal/biomass gasification. DME is a good substitute for gasoil in diesel engine. Its Lower Heating Value is close to that of ethanol but it offers some advantages compared to alcohols in terms of stability and miscibility with hydrocarbons. While numerous studies have been devoted to the combustion of DME in diesel engines, results are scarce as far as boilers and gas turbines are concerned. Some safety aspects must be addressed before feeding a combustion device with DME because of its low flash point (as low as −83°C), its low auto-ignition temperature and large domain of explosivity in air. As far as emissions are concerned, the existing literature shows that in non premixed flames, DME produces less NOx than ethane taken as parent molecular structure, based on an equivalent heat input to the burner. During a field test performed in a gas turbine, a change-over from methane to DME led to a higher fuel nozzle temperature but to a lower exhaust gas temperature. NOx emissions decreased over the whole range of heat input studied but a dramatic increase of CO emissions was observed. This work aims to study the combustion behavior of DME in gas turbine conditions with the help of a detailed kinetic modeling. Several important combustion parameters, such as the auto-ignition temperature (AIT), ignition delay times, laminar burning velocities of premixed flames, adiabatic flame temperatures, and the formation of pollutants like CO and NOx have been investigated. These data have been compared with those calculated in the case of methane combustion. The model was built starting from a well validated mechanism taken from the literature and already used to predict the behavior of other alternative fuels. In flame conditions, DME forms formaldehyde as the major intermediate, the consumption of which leads in few steps to CO then CO2. The lower amount of CH2 radicals in comparison with methane flames seems to decrease the possibility of prompt-NO formation. This paper covers the low temperature oxidation chemistry of DME which is necessary to properly predict ignition temperatures and auto-ignition delay times that are important parameters for safety.

Author(s):  
Pierre-Alexandre Glaude ◽  
Baptiste Sirjean ◽  
René Fournet ◽  
Roda Bounaceur ◽  
Matthieu Vierling ◽  
...  

Heavy duty gas turbines are very flexible combustion tools that accommodate a wide variety of gaseous and liquid fuels ranging from natural gas to heavy oils, including syngas, LPG, petrochemical streams (propene, butane…), hydrogen-rich refinery by-products; naphtha; ethanol, biodiesel, aromatic gasoline and gasoil, etc. The contemporaneous quest for an increasing panel of primary energies leads manufacturers and operators to explore an ever larger segment of unconventional power generation fuels. In this moving context, there is a need to fully characterize the combustion features of these novel fuels in the specific pressure, temperature and equivalence ratio conditions of gas turbine combustors using e.g. methane as reference molecule and to cover the safety aspects of their utilization. A numerical investigation of the combustion of a representative cluster of alternative fuels has been performed in the gas phase, namely two natural gas fuels of different compositions, including some ethane, a process gas with a high content of butene, oxygenated compounds including methanol, ethanol, and DME (dimethyl ether). Sub-mechanisms have specifically been developed to include the reactions of C4 species. Major combustion parameters, such as auto-ignition temperature (AIT), ignition delay times (AID), laminar burning velocities of premixed flames, adiabatic flame temperatures, and CO and NOx emissions have then been investigated. Finally, the data have been compared with those calculated for methane flames. These simulations show that the behaviors of alternative fuels markedly differ from that of conventional ones. Especially, DME and the process gases appear to be highly reactive with significant impacts on the auto-ignition temperature and flame speed data, which justifies burner design studies within premixed combustion schemes and proper safety considerations. The behaviors of alcohols (especially methanol) display some commonalities with those of conventional fuels. In contrast, DME and process gas fuels develop substantially different flame temperature and NOx generation rates than methane. Resorting to lean premix conditions is likely to achieve lower NOx emission performances. This review of gas turbine fuels shows for instance that the use of methanol as a gas turbine fuel is possible with very limited combustor modifications.


Author(s):  
Pierre A. Glaude ◽  
Rene´ Fournet ◽  
Roda Bounaceur ◽  
Michel Molie`re

Some research is currently carried out in order to limit CO2 emissions in power generation. Among alternative fuels to natural gas and gasoil in gas turbines, ethanol offers some advantages. However, while the studies dealing with the combustion of methanol are numerous, the research devoted to ethanol flames is rather scarce, in particular with regard to the use in gas turbines. The combustion of ethanol has been theoretically studied by means of a detailed kinetic model well validated in flame conditions. Thanks to quantum chemistry calculations, the reactions necessary to represent low temperature oxidation have been identified and incorporated in the mechanism and their rate parameters have been determined. Several key parameters, such as auto-ignition temperature (AIT), ignition delay times, laminar burning velocities of premixed flames, adiabatic flame temperatures, and formation of pollutants such as CO and NOx have been investigated in an effort to covers gas turbine applications. One has also explored conditions close to ambient in order to address the related safety aspects (leakages of ethanol). To take into account the potential presence of water in ethanol based fuels, similar studies have been performed for ethanol-water-air mixtures. At last, the data have been compared with those calculated for methane combustion. In the low pressure range, the calculated minimum ignition temperatures have been found to be very sensitive to the pressure and the equivalence ratio for lean mixtures. For pressures above 5 bar and moderately lean or rich mixtures, AITs tend to remain close to 440K. Ignition delay times have been calculated in adiabatic conditions at constant pressure. Surprisingly the addition of limited water contents has a very low influence on these results. The addition of water in the ethanol-air mixture decreases slightly the flame temperatures. In the low temperature range, water increases slightly the auto ignition delay times whereas an opposite effect is observed at high temperature. Calculated flame speed has been compared to that deduced from empirical relations found in the literature and the agreement is satisfactory. The formation of CO in pure ethanol flame was always higher than in methane flame while NO formation showed no difference between the amount calculated in ethanol flame and in methane flame. This result is consistent with the slight difference observed between the adiabatic flame temperatures for the two fuels. When increasing the water content up to 10% in ethanol, the laminar velocities become close to those calculated for methane.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g., by cofiring. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular, ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation—in decentralized (microgas turbines) or centralized gas turbine units, neat, or cofired with gaseous fuels like natural gas (NG) and biogas—is discussed. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed, for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within computational fluid dynamics (CFD) codes. Therefore, a detailed experimental and modeling study of ethanol cofiring to NG will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel–air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of NG, ethanol, and ethanol cofired to NG.


Author(s):  
Andreas Koch ◽  
Clemens Naumann ◽  
Wolfgang Meier ◽  
Manfred Aigner

The objective of this work was the improvement of methods for predicting autoignition in turbulent flows of different natural gas mixtures and air. Measurements were performed in a mixing duct where fuel was laterally injected into a turbulent flow of preheated and pressurized air. To study the influence of higher order hydrocarbons on autoignition, natural gas was mixed with propane up to 20% by volume at pressures up to 15 bar. During a measurement cycle, the air temperature was increased until autoignition occurred. The ignition process was observed by high-speed imaging of the flame chemiluminescence. In order to attribute a residence time (ignition delay time) to the locations where autoignition was detected the flow field and its turbulent fluctuations were simulated by numerical codes. These residence times were compared to calculated ignition delay times using detailed chemical simulations. The measurement system and data evaluation procedure are described and preliminary results are presented. An increase in pressure and in fraction of propane in the natural gas both reduced the ignition delay time. The measured ignition delay times were systematically longer than the predicted ones for temperatures above 950 K. The results are important for the design process of gas turbine combustors and the studies also demonstrate a procedure for the validation of design tools under relevant conditions.


Author(s):  
Thoralf G. Reichel ◽  
Jan-Simon Schäpel ◽  
Bernhard C. Bobusch ◽  
Rupert Klein ◽  
Rudibert King ◽  
...  

Approximate constant volume combustion (aCVC) is a promising way to achieve a step change in the efficiency of gas turbines. This work investigates a recently proposed approach to implement aCVC in a gas turbine combustion system: shockless explosion combustion (SEC). The new concept overcomes several disadvantages such as sharp pressure transitions, entropy generation due to shock waves, and exergy losses due to kinetic energy which are associated with other aCVC approaches such as pulsed detonation combustion. The combustion is controlled via the fuel/air mixture distribution which is adjusted such that the entire fuel/air volume undergoes a spatially quasi-homogeneous auto-ignition. Accordingly, no shock waves occur and the losses associated with a detonation wave are not present in the proposed system. Instead, a smooth pressure rise is created due to the heat release of the homogeneous combustion. An atmospheric combustion test rig is designed to investigate the auto-ignition behavior of relevant fuels under intermittent operation, currently up to a frequency of 2 Hz. Application of OH*– and dynamic pressure sensors allows for a spatially and time-resolved detection of ignition delay times and locations. Dimethyl ether (DME) is used as fuel since it exhibits reliable auto-ignition already at 920 K mixture temperature and ambient pressure. First, a model-based control algorithm is used to demonstrate that the fuel valve can produce arbitrary fuel profiles in the combustion tube. Next, the control algorithm is used to achieve the desired fuel stratification, resulting in a significant reduction in spatial variance of the auto-ignition delay times. This proves that the control approach is a useful tool for increasing the homogeneity of the auto-ignition.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g. by co-firing. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation — in decentralized (micro gas turbines) or centralized gas turbine units, neat, or co-fired with gaseous fuels like natural gas and biogas — is discussed, besides its role within the transport sector. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed; for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within CFD (computational fluid dynamics) codes. Therefore, a detailed experimental and modeling study of ethanol co-firing to natural gas will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel-air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of natural gas, ethanol, and ethanol co-fired to natural gas.


Author(s):  
Marissa L. Brower ◽  
Olivier Mathieu ◽  
Eric L. Petersen ◽  
Nicola Donohoe ◽  
Alexander Heufer ◽  
...  

Applications of natural gases that contain high levels of hydrogen have become a primary interest in the gas turbine market. While the ignition delay times of hydrogen and of the individual hydrocarbons in natural gases can be considered well known, there have been few previous experimental studies into the effects of different levels of hydrogen on the ignition delay times of natural gases at gas turbine conditions. To examine the effects of hydrogen content at gas turbine conditions, shock-tube experiments were performed on nine mixtures of an L9 matrix. The L9 matrix was developed by varying four factors: natural gas higher-order hydrocarbon content of 0, 18.75, or 37.5%; hydrogen content of the total fuel mixture of 30, 60, or 80%; equivalence ratios of 0.3, 0.5, or 1; and pressures of 1, 10, or 30 atm. Temperatures ranged from 1092 K to 1722 K, and all mixtures were diluted in 90% Ar. Correlations for each mixture were developed from the ignition delay times and, using these correlations, a factor sensitivity analysis was performed. It was found that hydrogen played the most significant role in the ignition delay times of a mixture. Pressure was almost as important as hydrogen content, especially as temperature increased. Equivalence ratio was slightly more important than hydrocarbon content of the natural gas, but both were less important than pressure or hydrogen content. Comparison with a modern chemical kinetic model demonstrated that the model captures well the relative impacts of H2 content, temperature, and pressure, but some improvements are still needed in terms of absolute ignition delay times.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Lean-premixed gas turbines are now common devices for low emissions stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g., auto-ignition within the premixer and pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and freestream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps, and airfoils. The results of this study have been used to develop an engineering tool that predicts under what conditions a flame will anchor, and can be used for development of flame anchoring resistant gas turbine premixers.


2014 ◽  
Vol 1070-1072 ◽  
pp. 549-552
Author(s):  
Yu Liu ◽  
Wen Zeng ◽  
Hong An Ma ◽  
Kang Yao Deng

In order to reduce the emission and realize the sustainable development in aviation industry, looking for alternative fuel as kerosene has become more and more important. Hydrogen is regarded as one of the most promising alternative fuels. In our study RP-3 kerosene with hydrogen addition is used as the alternative kerosene. A RP-3 kerosene surrogate includes n-decane, toluene and propyl cyclohexane (volume fraction is 0.65/0.1/0.25) was chosen and the ignition delay times are calculated in CHEMKIN-PRO, it is found that hydrogen addition can shorten ignition delay.


Author(s):  
Amrit Bikram Sahu ◽  
A. Abd El-Sabor Mohamed ◽  
Snehasish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840–1050 K), pressures (20–30 bar), and equivalence ratios (φ = 0.5 and 1.5). The experiments were complimented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1–2%) of n-hexane and n-heptane can lead to increase in reactivity by ∼40–60 ms at compressed temperature (TC) = 700 K. The ignition delay time (IDT) of these mixtures decrease rapidly with an increase in concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration beyond 10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700–900 K compared to that at higher temperatures (> 900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M) ↔ 2ȮH(+M) at higher temperatures while the fuel dependent reactions such as H-atom abstraction, RȮ2 dissociation or Q.OOH + O2 reactions are less important compared to 700–900 K, where they are very important.


Sign in / Sign up

Export Citation Format

Share Document