A Review of the Oxford Turbine Research Facility

Author(s):  
Kam Chana ◽  
Dave Cardwell ◽  
Terry Jones

Gas turbine engine efficiency and reliability is generally improved through better understanding and improvements to the design of individual components. The life limiting component of the modern gas turbine is the high pressure (HP) turbine stage due to the arduous environment. Over the last 50 years significant research effort has been focused on advancing blade cooling designs and materials. Due to practical limitations little fundamental research on the turbine system is performed in the operating gas turbine engine. Consequently different types of experimental approaches have been developed over the last 4 decades to study the flow and in particular the heat transfer and cooling in turbines. In general the facilities can be divided into continuous running or short duration and cascade or rotating. Over the last 30 years short duration facilities have dominated the research in the study of turbine heat transfer and cooling. The Oxford Turbine Research Facility (formerly known as the QinetiQ Turbine Test Facility, The Isentropic Light Piston Facility and The Isentropic Light Piston Cascade) is a short duration facility developed and built in the late 1970s and early 1980s for turbine heat transfer and cooling studies. This paper presents the developments and measurements taken on the facility over the last 35 years, including the type of research that has been conducted and, the current capability of the facility.

Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


2021 ◽  
Author(s):  
Illia Petukhov ◽  
Taras Mykhailenko ◽  
Oleksii Lysytsia ◽  
Artem Kovalov

Abstract A clear understanding of the heat transfer processes in a gas turbine engine bearing chamber at the design stage makes it possible to properly design the lubrication and sealing systems and ensure the future bearing safe operation. The heat transfer coefficient (HTC) calculated based on the classical Newton-Richman equation is widely used to represent the heat transfer data and useful for the thermal resistance analysis. However, this approach is only formally applicable in the case of a two-phase medium. While there is a need to model a two-phase medium, setting the flow core temperature correctly in the Newton-Richman equation is an issue that is analyzed in this study. The heat from the flow core is transferred to the boundary of the oil film on the bearing chamber walls by an adjacent air and precipitating droplets. The analysis showed that droplet deposition plays a decisive role in this process and significantly intensifies the heat transfer. The main contribution to the thermal resistance of internal heat transfer is provided by the oil film. In this regard, the study considers the issues of the bearing chamber workflow modeling allowing to determine the hydrodynamic parameters of the oil film taking into account air and oil flow rates and shaft revolutions. The study also considers a possibility to apply the thermohydraulic analogy methods for the oil film thermal resistance determination. The study presents practical recommendations for process modeling in the bearing chamber.


Author(s):  
G. Paniagua ◽  
C. H. Sieverding ◽  
T. Arts

Advances in turbine-based engine efficiency and reliability are achieved through better knowledge of the mechanical interaction with the flow. The life-limiting component of a modern gas turbine engine is the high-pressure (HP) turbine stage due to the arduous environment. For the same reason, real gas turbine engine operation prevents fundamental research. Various types of experimental approaches have been developed to study the flow and in particular the heat transfer, cooling, materials, aero-elastic issues and forced response in turbines. Over the last 30 years short duration facilities have dominated the research in the study of turbine heat transfer and cooling. Two decades after the development of the von Karman Institute compression tube facility (built in the 90s), one could reconsider the design choices in view of the modern technology in compression, heating, control and electronics. The present paper provides first the history of the development and then how the wind tunnel is operated. Additionally the paper disseminates the experience and best practices in specifically designed measurement techniques to both experimentalists and experts in data processing. The final section overviews the turbine research capabilities, providing details on the required upgrades to the test section.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

The transition-piece of a gas turbine engine is subjected to high thermal loads as it collects high temperature combustion products from the gas generator to a turbine. This generally produces high thermal stress levels in the casing of the transition piece, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the transition-piece life span and to assure safe operations. The present study aims to investigate the aero-thermal behaviour of a gas turbine engine transition-piece and in particular to evaluate working temperatures of the casing in relation to the flow and heat transfer situation inside and outside the transition-piece. Typical operating conditions are considered to determine the amount of heat transfer from the gas to the casing by means of CFD. Both conjugate approach and wall fixed temperature have been considered to compute the heat transfer coefficient, and more in general, the transition-piece thermal loads. Finally a discussion on the most convenient heat transfer coefficient expression is provided.


Author(s):  
Tom Filburn ◽  
Amanda Kloter ◽  
Dave Cloud

Compact heat exchanger designs are commonly used in many gas turbine engine applications. Though effective in their heat transfer function, they are often heavy, costly, and poor aerodynamic performers causing a reduction in engine efficiency. In addition, they are complex to manufacture and often prone to leakage. Finned surface heat exchangers are an attractive alternative to traditional compact designs. They can perform efficiently both aerodynamically and thermally. Such units could be mounted in the bypass fan stream of a gas turbine engine where large amounts of heat must be rejected from vital engine fluids such as oil and fuel. This research project investigated the efficiency of various fin designs applied to an oil cooler. Highly conductive materials, such as carbon composites were explored, and then compared to aerospace-quality aluminum alloys. Thermal, aerodynamic, economic, and weight performance comparisons between the carbon and aluminum fin structures were quantified. A three-dimensional numerical estimation of the final design concept was conducted using ANSYS. This research project specifically investigated the design of a finned surface air-oil heat exchanger. Design parameters included a total heat rejection of 2000 Btu/min and an oil temperature change of 100 degrees Fahrenheit with an inlet oil temperature of 300 degrees. The first design phase was conducted using an aerospace quality aluminum alloy. Internal and external flow convection theory was studied closely as well as basic heat exchanger and fin design concepts. A heat exchanger program was developed in Excel, automating the heat transfer based on basic geometric inputs. The program allowed easy iterations of fin/oil passage designs to meet the performance requirements and optimize the heat exchanger’s weight. The final iteration was then numerically modeled in ANSYS. The predicted heat transfer rate was then compared to the numerical estimation in ANSYS. The Excel program was validated by producing results within 2% of the ANSYS predicted solutions. Upon completion of the aluminum design. highly conductive materials, such as carbon composites were explored and implemented. The final designs of this project (both Aluminum and Carbon-Carbon) identified a new method of heat rejection at a significantly lower weight impact to the engine. The aluminum design had a total core weight of 25.4 lb while the carbon-carbon final design had a total core weight of 12.8 lb. In addition, both units have the potential to be incorporated within an existing engine case exposed to the bypass air stream, which may result in an additional weight savings.


Author(s):  
J. R. Taylor

A discussion of the problems encountered in prediction of heat transfer in the turbine section of a gas turbine engine is presented. Areas of current gas turbine engine is presented. Areas of current concern to designers where knowledge is deficient or lacking are elucidated. Consideration is given to methods and problems associated with determination of heat transfer coefficients, external gas temperatures, and, where applicable, film cooling effectiveness. The paper is divided into parts dealing with turbine airfoil heat transfer, endwall heat transfer, and heat transfer in the internal cavities of cooled turbine blades. Recent literature dealing with these topics is listed.


Sign in / Sign up

Export Citation Format

Share Document