Numerical Investigation on the Effect of Vortex Generator on Axial Compressor Performance
The performance of the compressor blade is considerably influenced by secondary flow effects, like the cross flow on the end wall as well as corner flow separation between the wall and the blade. The present work is focused on the studying the effects of Vortex Generator (VG) on NASA Rotor 37 test case using Computational Fluid Dynamics (CFD). VG helps in controlling the inception of the stall by generating vortices and energizes the low momentum boundary layer flow which enhances the rotor performance. Three design configuration namely, Counter-rotating, Co-rotating and Plow configuration VG are selected based on the improved aerodynamic performance discussed in reference [1]. These VG are located at 90% span and 42% chord on suction side surface of the blade. Among the three configurations, the first configuration has greater impact on the end wall cross flow and flow deflection which resulted in enhanced numerical stall margin of 5.4% from baseline. The reasons for this numerical stall margin improvement are discussed in detail.