Control of Tip-Clearance Flow in a Low Speed Axial Compressor Rotor With Plasma Actuation
This research investigates different dielectric barrier discharge (DBD) actuator configurations for affecting tip leakage flow and suppressing stall inception. Computational investigations were performed on a low-speed rotor with a highly loaded tip region that was responsible for stall-onset. The actuator was mounted on the casing upstream of the rotor leading edge. Plasma injection had a significant impact on the predicted tip-gap flow and improved stall margin. The effect of changing the actuator forcing direction on stall margin was also studied. The improvement in stall margin was closely correlated with a reduction in loading parameter that quantifies mechanisms responsible for end-wall blockage generation. The actuation reduced end-wall losses by increasing the static pressure of tip-gap flow emerging from blade suction-side. Lastly, an approximate speed scaling developed for the DBD force helped estimate force requirements for stall enhancement of transonic rotors.