Wind Profile Effect on Small Wind Turbine Noise Generation

Author(s):  
Aki Grönman ◽  
Jari Backman ◽  
Anna Avramenko

Small wind turbines are usually located close to buildings, and therefore, the noise generation can be both annoying and a risk for the health. The number of wind turbine installations is growing, and the request for distributed small scale energy production is one of the future trends in the energy market. The wind behavior is usually non-linear close to the ground surface. Especially, small turbines with low nacelle heights have a relatively declined wind profile at the blades. The chosen modeling approach coupled three-dimensional RANS with the Ffowcs Williams-Hawkings acoustic analogy. A series of numerical simulations was performed to study the reliability of the modeling. Three different grids were used to study the grid independency close to the turbine nominal tip to speed ratio. A reasonable agreement in the noise trends was found between the modeling and the measurements and previous studies. This encouraged us to study three different wind profiles with a down scaled wind turbine model. The results indicate that the aerodynamic noise of small turbines is not markedly affected by the wind profile.

Author(s):  
Dorothy S. Small

This paper will evaluate a specific site located in southwestern Virginia, providing design criteria that are important considerations at this site. The evaluation will predict the output from a 6 blade HAWT model at the height and location of the site. As a small scale wind turbine, the process of determination of relevant considerations to establish the turbine selection and output are weighted to establish the evaluation criteria. A review of the specific site conditions are presented in detail. This information includes: three-dimensional topographic review, wind and weather profile of the site and surrounding environmental conditions of the site. With this information the decision path for the specific siting is discussed. Characteristics of the site that will be considered to calculate output are: historical data of wind profile of the region, height of tower, affect of other objects and affect of wind turbulence. A discussion of current modeling options will be compared. The design and components of the small scale wind turbine chosen for this application will be compared to other wind turbines of similar size and cost. Considerations of the turbine that are considered are: size of wind turbine, cost of wind turbine, predictable output of the wind turbine based on design of the various wind turbines, requirements for the tower for each turbine and predicted maintenance for each turbine. Initial performance of the selected turbine will be available by presentation of information.


Author(s):  
Nicoletta Franchina ◽  
Otman Kouaissah ◽  
Giacomo Persico ◽  
Marco Savini

The paper presents the results of a computational study on the aerodynamics and the performance of a small-scale Vertical-Axis Wind Turbine (VAWT) for distributed micro-generation. The complexity of VAWT aerodynamics, which are inherently unsteady and three-dimensional, makes high-fidelity flow models extremely demanding in terms of computational cost, limiting the analysis to mainly 2D or 2.5D Computational Fluid-Dynamics (CFD) approaches. This paper discusses how a proper setting of the computational model opens the way for carrying out fully 3D unsteady CFD simulations of a VAWT. Key aspects of the flow model and of the numerical solution are discussed, in view of limiting the computational cost while maintaining the reliability of the predictions. A set of operating conditions is considered, in terms of tip-speed-ratio (TSR), covering both peak efficiency condition as well as off-design operation. The fidelity of the numerical predictions is assessed via a systematic comparison with the experimental benchmark data available for this turbine, consisting of both performance and wake measurements carried out in the large-scale wind tunnel of the Politecnico di Milano. The analysis of the flow field on the equatorial plane allows highlighting its time-dependent evolution, with the aim of identifying both the periodic flow structures and the onset of dynamic stall. The full three-dimensional character of the computations allows investigating the aerodynamics of the struts and the evolution of the trailing vorticity at the tip of the blades, eventually resulting in periodic large-scale vortices.


2021 ◽  
pp. 1-37
Author(s):  
Mabrouk Mosbahi ◽  
Mouna Derbel ◽  
Mariem Lajnef ◽  
Bouzid Mosbahi ◽  
Zied Driss ◽  
...  

Abstract Twisted Darrieus water turbine is receiving growing attentiveness for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focalise on the blade shape optimization of twisted Darrieus turbine. In view of this, an experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. Maximum power coefficient of Darrieus rotor reaches 0.17 at 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, maximum power coefficient has been risen up to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man made water canals.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2949 ◽  
Author(s):  
Lee ◽  
Kim ◽  
Kang ◽  
Kim

Although the size of the wind turbine has become larger to improve the economic feasibility of wind power generation, whether increases in rotor diameter and hub height always lead to the optimization of energy cost remains to be seen. This paper proposes an algorithm that calculates the optimized hub height to minimize the cost of energy (COE) using the regional wind profile database. The optimized hub height was determined by identifying the minimum COE after calculating the annual energy production (AEP) and cost increase, according to hub height increase, by using the wind profiles of the wind resource map in South Korea and drawing the COE curve. The optimized hub altitude was calculated as 75~80 m in the inland plain but as 60~70 m in onshore or mountain sites, where the wind profile at the lower layer from the hub height showed relatively strong wind speed than that in inland plain. The AEP loss due to the decrease in hub height was compensated for by increasing the rotor diameter, in which case COE also decreased in the entire region of South Korea. The proposed algorithm of identifying the optimized hub height is expected to serve as a good guideline when determining the hub height according to different geographic regions.


2007 ◽  
Vol 64 (10) ◽  
pp. 3542-3561 ◽  
Author(s):  
Oliver Fuhrer ◽  
Christoph Schär

Abstract Shallow orographic convection embedded in an unstable cap cloud can organize into convective bands. Previous research has highlighted the important role of small-amplitude topographic variations in triggering and organizing banded convection. Here, the underlying dynamical mechanisms are systematically investigated by conducting three-dimensional simulations of moist flows past a two-dimensional mountain ridge using a cloud-resolving numerical model. Most simulations address a sheared environment to account for the observed wind profiles. Results confirm that small-amplitude topographic variations can enhance the development of embedded convection and anchor quasi-stationary convective bands to a fixed location in space. The resulting precipitation patterns exhibit tremendous spatial variability, since regions receiving heavy rainfall can be only kilometers away from regions receiving little or no rain. In addition, the presence of banded convection has important repercussions on the area-mean precipitation amounts. For the experimental setup here, the gravity wave response to small-amplitude topographic variations close to the upstream edge of the cap cloud (which is forced by the larger-scale topography) is found to be the dominant triggering mechanism. Small-scale variations in the underlying topography are found to force the location and spacing of convective bands over a wide range of scales. Further, a self-sufficient mode of unsteady banded convection is investigated that does not dependent on external perturbations and is able to propagate against the mean flow. Finally, the sensitivity of model simulations of banded convection with respect to horizontal computational resolution is investigated. Consistent with predictions from a linear stability analysis, convective bands of increasingly smaller scales are favored as the horizontal resolution is increased. However, small-amplitude topographic roughness is found to trigger banded convection and to control the spacing and location of the resulting bands. Thereby, the robustness of numerical simulations with respect to an increase in horizontal resolution is increased in the presence of topographic variations.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


Author(s):  
Carlos Xisto ◽  
José Páscoa ◽  
Michele Trancossi

In the paper, four key design parameters with a strong influence on the performance of a small-scale high solidity variable pitch VAWT (Vertical Axis Wind Turbine), operating at low tip-speed-ratio (TSR) are addressed. To this aim a numerical approach, based on a finite-volume discretization of two-dimensional Unsteady RANS equations on a multiple sliding mesh, is proposed and validated against experimental data. The self-pitch VAWT design is based on a straight blade Darrieus wind turbine with blades that are allowed to pitch around a feathering axis, which is also parallel to the axis of rotation. The pitch angle amplitude and periodic variation are dynamically controlled by a four-bar-linkage system. We only consider the efficiency at low and intermediate TSR, therefore the pitch amplitude is chosen to be a sinusoidal function with a considerable amplitude. The results of this parametric analysis will contribute to define the guidelines for building a full size prototype of a small scale turbine of increased efficiency.


Author(s):  
Akiyoshi Iida ◽  
Akisato Mizuno ◽  
Kyoji Kamemoto

Unsteady flow field and flow induced noise of vertical axis wind turbine are numerically investigated. The flow field is numerically calculated by the vortex method with core-spreading model. This simulation obtains aerodynamic performance and aerodynamic forces. Aerodynamic noise is also simulated by using Ffowcs Williams-Hawkings equation with compact body and low-Mach number assumptions. Tip speed of rotor blades are not so high, then the contribution of the moving sound source is smaller than that of the dipole sound source. Since the maximum power coefficient of VAWT can be obtained at lower tip-speed ratio compared to the conventional, horizontal axis wind turbines, the aerodynamic noise from vertical axis wind turbine is smaller than that of the conventional wind turbines at the same aerodynamic performance. This result indicates that the vertical axis wind turbines are useful to develop low-noise wind turbines.


Sign in / Sign up

Export Citation Format

Share Document