Numerical Analysis of Fan Transonic Stall Flutter

Author(s):  
Mizuho Aotsuka ◽  
Takeshi Murooka

This paper describes numerical investigation of fan transonic stall flutter, especially focused on flutter bite. A transonic stall flutter occurs in high loaded condition at part rotating speed. A region of the transonic stall flutter occasionally protrudes to an operating line at narrow rotational speed range. This protrusion of flutter boundary is called flutter bite. In that case, it is necessary to re-design the blade for securing sufficient operating range. The re-design process might require some compromise on performance and/or weight, and takes long time. So it is important to understand the mechanism of the flutter bite. Two types of fan blade, one has a flutter bite and another dose not, are numerically studied with a 3D Navier Stokes CFD code. Numerical results show agreement with rig test results for the fans in qualitative sense. Detailed flow fields reveal that a detached shock wave and separation due to the shock boundary layer interaction play significant role for the flutter stability.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Sina Stapelfeldt ◽  
Mehdi Vahdati

The aim of this paper is to introduce design modifications that can be made to improve the flutter stability of a fan blade. A rig fan blade, which suffered flutter in the part-speed range and for which good quality measured data in terms of steady flow and flutter boundary is available, is used for this purpose. The work is carried out numerically using the aeroelasticity code AU3D. Two different approaches are explored: aerodynamic modifications and aero-acoustic modifications. In the first approach, the blade is stabilized by altering the radial distribution of the stagger angle based on the steady flow on the blade. The re-staggering patterns used in this work are therefore particular to the fan blade under investigation. Moreover, the modifications made to the blade are very simple and crude, and more sophisticated methods and/or an optimization approach could be used to achieve the above objectives with a more viable final design. This paper, however, clearly demonstrates how modifying the steady blade aerodynamics can prevent flutter. In the second approach, flutter is removed by drawing bleed air from the casing above the tip of the blade. Only a small amount of bleed (0.2% of the total inlet flow) is extracted such that the effect on the operating point of the fan is small. The purpose of the bleed is merely to attenuate the pressure wave that propagates from the trailing edge to the leading edge of the blade. The results show that extracting bleed over the tip of the fan blade can improve the flutter margin of the fan significantly.


Author(s):  
Sina Stapelfeldt ◽  
Mehdi Vahdati

The aim of this paper is to introduce design modifications which can be made to improve the flutter stability of a fan blade. A rig fan blade, which suffered from flutter in the part-speed range and for which good quality measured data in terms of steady flow and flutter boundary is available, is used for this purpose. The work is carried out numerically using the aeroelasticity code AU3D. Two different approaches are explored; aerodynamic modifications and aero-acoustic modifications. In the first approach, the blade is stabilized by altering the radial distribution of the stagger angle based on the steady flow on the blade. The re-staggering patterns used in this work are therefore particular to the fan blade under investigation. Moreover, the modifications made to the blade are very simple and crude and more sophisticated methods and/or an optimization approach could be used to achieve the above objectives with a more viable final design. This paper, however, clearly demonstrates how modifying the steady blade aerodynamics can prevent flutter. In the second approach, flutter is removed by drawing bleed air from the casing above the tip of the blade. Only a small amount of bleed (0.2% of the total inlet flow) is extracted such that the effect on the operating point of the fan is small. The purpose of the bleed is merely to attenuate the pressure wave which propagates from the trailing edge to the leading edge of the blade. The results show that extracting bleed over the tip of the fan blade can improve the flutter margin of the fan significantly.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Q. Rendu ◽  
M. Vahdati ◽  
L. Salles

Abstract This paper investigates the three dimensionality of the unsteady flow responsible for stall flutter instability. Nonlinear unsteady Reynolds-averaged Navier–Stokes (RANS) computations are used to predict the aeroelastic behavior of a fan blade at part speed. Flutter is experienced by the blades at low mass flow for the first flap mode at nodal diameter 2. The maximal energy exchange is located near the tip of the blade, at 90% span. The modeshape is radially decomposed to investigate the main source of instability. This decomposition method is validated for the first time in 3D using a time-marching nonlinear solver. The source of stall flutter is finally found at 65% span where the local vibration induces an unstable oscillation of the shock-wave of large amplitude. This demonstrates that the radial migration of the pressure fluctuations must be taken into account to predict stall flutter.


2020 ◽  
Vol 3 (2) ◽  
pp. 103-113
Author(s):  
Rachmad Ikhsan ◽  
Effendi Effendi

Roasting coffee manually is widely applied by coffee producers. This process takes a very long time and is less efficient in terms of productivity for industry standards. This machine  is equipped with a thermocouple sensor as a temperature sensor that will measure the temperature in the roasting cylinder, then equipped with a timer as a reminder of roasting time that ranges from 15 minutes at a temperature of 200 degrees Celsius, this machine  is also equipped with android as a timer controller on the coffee roaster machine. This machine is also equipped with a microcontroller and Bluetooth as a media transmitter and data receiver. From the test results obtained data that Bluetooth can be used for data communication between the microcontroller and Android with a distance of 30 meters in the room, and 12 meters outside the room. If it exceeds that distance, then Bluetooth will not respond back


Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Bo Wang ◽  
Wei Zheng

In this paper, a rotordynamic experiment on a compressor rotor system is presented and the feasibility of gas foil bearings with inhomogeneous bump foils is verified. A push–pull device is designed to obtain the stiffness curve and the nominal clearance of foil bearings. Operating points and dynamic coefficients of the rotor system at each rotating speed are predicted. In rotordynamic analysis, an alternative model of the impeller is proposed and the critical speed is predicted by employing the finite element method, in which the dynamic coefficients of inhomogeneous foil bearings are taken into account. Compared with the experimental result, the accuracy of the prediction for the critical speed is verified to be about 14% error. Two sets of foil bearings with 22 and 41 μm nominal clearance are manufactured and tested. Test results indicate that the vibration amplitude can be greatly reduced by diminishing the bearing clearance. When foil bearings with 22 μm clearance are used, the high-order harmonic frequencies of rotor vibration are significantly inhibited, and the amplitude of the rotating frequency is obviously restricted. Thus, the foil bearing with inhomogeneous bump foils tested in this paper can meet the speed requirement of the compressor when the nominal clearance is set at 22 μm.


Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.


Author(s):  
Joachim Schettel ◽  
Martin Deckner ◽  
Klaus Kwanka ◽  
Bernd Lu¨neburg ◽  
Rainer Nordmann

The main goal of this paper is to improve identification methods for rotordynamic coefficients of labseals for turbines. This aim was achieved in joint effort of the Technische Universita¨t Mu¨nchen, working on experimental identification methods for rotordynamic coefficients, the University of Technology, Darmstadt, working on prediction methods, and Siemens AG, realizing the results. The paper focuses on a short comb-grooved labyrinth seal. Short labseals, amongst others the above mentioned comb-grooved labyrinth, were examined. by means of a very accurately measuring test rig. The rotor was brought into statically eccentric positions relative to the stator, in order to measure the circumferential pressure distribution as a function of pressure, rotating speed and entrance swirl. The data collected were used to validate results obtained with a numerical method. The theoretical approach is based on a commercial CFD tool, which solves the Navier Stokes equations using numerical methods. As a result, a detailed model of the flow within the test rig is produced. The efforts of computation here are greater than when compared with the likewise wide-spread Bulk flow models, however improved accuracy and flexibility is expected. As the validation of the model is successful, it could then be used to gain further insight in the flow within the seal, and to understand the results better. This showed that rotordynamic coefficients of labseals gained from different test rigs are not necessarily comparable.


1954 ◽  
Vol 21 (3) ◽  
pp. 225-235
Author(s):  
A. M. Wahl ◽  
G. O. Sankey ◽  
M. J. Manjoine ◽  
E. Shoemaker

Abstract A theoretical and experimental program involving methods of calculating creep in rotating disks at elevated temperatures is described. This program consisted primarily of the following: (a) Obtaining forged disks from the same ingot of 12 per cent chrome steel, all disks being forged and heat-treated in the same manner; (b) making spin tests at 1000 F on three of these disks for periods up to about 1000 hr; ( ) making long-time tension-creep tests at 1000 F on many specimens cut out circumferentially from several of the other disks at stresses approximating those of the spin tests; (d) investigating theoretical methods of calculation of creep deformation in such disks; and (e) comparison of spin-test results with those calculated theoretically using average tension-creep data. It was found that available methods of calculating rotating disks based on the Mises criterion gave creep deformations too low compared to the test values, i.e., on the unsafe side for design. Considerably better agreement between test and theoretical results is obtained if the latter is based on the maximum-shear theory. Some discussion is given of the reasons for the better agreement obtained using the latter theory; these are believed to be related in part to the anisotropy of the forged material tested. Further tests on other materials are necessary before general conclusions can be drawn; however, in the absence of test data it is suggested that a conservative course in design for such disks is to apply the maximum-shear theory.


Sign in / Sign up

Export Citation Format

Share Document