Design and Analysis of a Real-Time Hot Gas Temperature Estimator for Heavy-Duty Gas Turbines

Author(s):  
Eric A. Müller ◽  
Adrian Ticǎ

The knowledge about a relevant process and lifetime indicative quantity, such as the hot gas temperature, is crucial for the control of a gas turbine. Since this indicative process quantity usually cannot be directly measured, it has to be estimated. The paper describes a model-based method to accurately estimate in real-time the hot gas temperature of a heavy-duty gas turbine. The method follows a well-balanced trade-off between resulting prediction accuracy and involved computational complexity. It takes advantage of the capability of a component-level dynamic model to predict the system behaviour and of the capacity of a dynamic tracking filter to adapt to the current gas turbine conditions. In a simulation study, it is shown that the proposed design can provide an accurate hot gas temperature estimation over the entire gas turbine load range, along the gas turbine lifecycle, and during fast transient manoeuvres.

Author(s):  
O. R. Schmoch ◽  
B. Deblon

The peripheral speeds of the rotors of large heavy-duty gas turbines have reached levels which place extremely high demands on material strength properties. The particular requirements of gas turbine rotors, as a result of the cycle, operating conditions and the ensuing overall concepts, have led different gas turbine manufacturers to produce special structural designs to resolve these problems. In this connection, a report is given here on a gas turbine rotor consisting of separate discs which are held together by a center bolt and mutually centered by radial serrations in a manner permitting expansion and contraction in response to temperature changges. In particular, the experience gained in the manufacture, operation and servicing are discussed.


Author(s):  
SS Talebi ◽  
AM Tousi ◽  
A Madadi ◽  
M Kiaee

Recently, the utilization of micro gas turbines in smart grids are rising that makes the part-load operation principal situation of the engine service. This leads to faster life consumption that increases the importance of the diagnostics process. Gas path analysis is an effective method for gas turbine diagnostics. Complex dynamics of gas turbine induces challenging conditions to perform applicable gas path analysis. This study aims to facilitate MGT gas path diagnostics through reducing the number of monitoring parameters and preparation a pattern for engine level and component level health assessment in both full and part load operation of a recuperated micro gas turbine. To attain this goal a model is proposed to simulate MGT off-design performance which is validated against experimental data in healthy and degraded operation modes. Fouling in compressor, turbine and recuperator and erosion in compressor and turbine as the most common degradations in the gas turbine are considered. The fault simulation is performed by changing the health parameters of gas path components. According to the result investigation, a matrix comprises deviation contours of four parameters, Power, fuel flow, compressor discharge pressure, and exhaust gas temperature is presented and analyzed. The analysis shows that monitoring these parameters makes it possible to perform engine level and component level diagnostics through evaluating a binary code (generated by mentioned parameter variations) against the fault effects pattern in different load fractions and fault severities. The simulation also showed that the most power drop occurred under the compressor fouling by about 8.7% while the most reduction in thermal efficiency is observed under recuperator fouling by about 7.84%. Furthermore, the investigation showed the maximum decrease in the surge margin induced by the compressor fouling during the lower part-load operation by about 45.7% while in the higher loads created by the turbine fouling by about 14%.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


1974 ◽  
Author(s):  
J. N. Shinn

Modern heavy-duty gas turbine installations employ a comprehensive system of protective circuits to provide needed equipment protection without jeopardizing plant reliability. The design of these circuits and the overall protective system philosophy are discussed to illustrate how protection and reliability are maximized. Experience gained to date on the application of these protective circuits also is reviewed.


1975 ◽  
Author(s):  
R. H. Knorr ◽  
G. Jarvis

This paper describes the maintenance requirements of the heavy-duty gas turbine. The various inspections and factors affecting maintenance are defined, and basic guidelines are presented for a planned maintenance program.


Author(s):  
Dietrich Eckardt ◽  
Peter Rufli

During more than 100 years engineers of the Swiss development center of A.-G. BBC Brown, Boveri & Cie., from 1988 onwards ABB Asea Brown Boveri Ltd, in 1999 ABB ALSTOM POWER Ltd and now ALSTOM Power Ltd in Baden, Switzerland have significantly contributed to the achievement of todays advanced gas turbine concept. Numerous “Firsts” are highlighted in this paper — ranging from the first realization of the industrial, heavy-duty gas turbine in the 1930s to todays high-technology Gas Turbine (GT) products, combining excellent performance, extraordinary low environmental impact with commercial attractiveness for global power generation. Interesting connections could be unveiled for the early parallel development of industrial and areo gas turbines.


Author(s):  
D. E. Brandt ◽  
M. Colas

Following a thorough market analysis, the MS 9001F heavy duty gas turbine has been designed using aerodynamic scaling based on the 60 Hz MS 7001F. Effort put into the design has been shared by the engineering departments of ALSTHOM and GE. This paper discusses the market surveys for large heavy duty gas turbines as well as the basis of design for the MS 9001F, which has been derived from the MS 7001F. Specifically discussed are the role of scaling, the design characteristics of the MS 7001F and the MS 9001F, the results of 7001F prototype testing, the test plan for the MS 9001F, plant lay out possibilities and ratings. The MS 9001F gas turbine uses advanced aircraft engine technology in its design, with a rating based on a firing temperature of 1260°C (2300°F), which is 156°C (280°F) higher and with compressor inlet flow 50% greater than its predecessor, the MS 9001E.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated both experimentally and numerically for some years now. Even though the numerical methods are still in development, today they have reached a certain degree of maturity allowing industry to focus on the results of the computations and their impact on turbine design, rather than on a further improvement of the methods themselves. The key to increase efficiency in modern gas turbines is a better understanding and subsequent optimization of the loss-generation mechanisms. A major part of these are the secondary losses. To this end, this paper presents the time-resolved secondary flow field for the two test cases computed, viz the first and the last turbine stage of a modern heavy duty gas turbine. A companion paper referring to the same computations focuses on the unsteady pressure fluctuations on vanes and blades. The investigations have been performed with the flow solver ITSM3D which allows for efficient calculations that simulate the real blade count ratio. This is a prerequisite to simulate the unsteady phenomena in frequency and amplitude properly.


Author(s):  
P. J. Cullen ◽  
T. A. Urbas

The resurgence of interest in the heavy duty gas turbine for marine use is due in a large part to its ability to burn residual and crude fuels. Generalities involving fuel treatment requirements have been bandied about for years and often the wrong information is used by unknowledgeable individuals when making quotations or bid evaluations. The purpose of this paper is to present firm information on the treatment of marine fuels for heavy duty gas turbines.


Sign in / Sign up

Export Citation Format

Share Document