Combined Experimental and Numerical Study of Showerhead Film Cooling in a Linear Nozzle Vane Cascade

Author(s):  
G. Barigozzi ◽  
S. Ravelli

In this paper showerhead film cooling performance measured on a first stage nozzle guide vane within a linear cascade are presented and compared against steady and unsteady CFD simulations. A showerhead cooling scheme was tested at blowing ratios of BR = 2 to 4 under engine-like conditions (i.e. nominal exit Mach number of Ma2is = 0.42 and high mainstream turbulence level). Adiabatic film cooling effectiveness in the leading edge region was measured by means of wide banded Thermochromic Liquid Crystals. A borescope was used to overcome the constraints to the optical access imposed by the turbulence generator. Moreover, exit surveys detailing total pressure downstream of the cooled vane were acquired using a five-hole miniaturized aerodynamic pressure probe. In view of qualitative/quantitative validation purposes, numerical modelling based on steady RANS and Detached Eddy Simulation (DES) approach was performed for the lowest investigated BR of 2.0, which provided the best film coverage. Nevertheless the dilution of the coolant jets from the showerhead was predicted by DES, agreement with the measured cooling effectiveness in the leading edge region was still far from being achieved. Instead, the steady approach was enough to capture aerodynamic features such as vane load, wake loss and plenum to mainstream pressure ratio.

Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions were measured on the leading edge region of a rotating blade using a Pressure Sensitive Paint technique. The film cooling effectiveness information was obtained from the oxygen concentration difference between air and nitrogen or air and CO2 injection cases by applying the mass transfer analogy. The blowing ratio was controlled to be 0.5, 1.0, and 2.0 while the density ratios of 1.0 and 1.5 were obtained using nitrogen and CO2 as coolant gases, respectively. Tests were conducted on the first stage rotor of a 3-stage axial turbine with off-design condition at 2400 rpm. The Reynolds number based on the axial chord length and the exit velocity was 200,000 and the total to exit pressure ratio was 1.12 for the first rotor. The film cooling effectiveness distributions were presented along with the discussion on the influence of blowing ratio, density ratio, and vortices around the leading edge region.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


2006 ◽  
Vol 128 (9) ◽  
pp. 879-888 ◽  
Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions are measured on the leading edge of a rotating gas turbine blade with two rows (pressure-side row and suction-side row from the stagnation line) of holes aligned to the radial axis using the pressure sensitive paint (PSP) technique. Film cooling effectiveness distributions are obtained by comparing the difference of the measured oxygen concentration distributions with air and nitrogen as film cooling gas respectively and by applying the mass transfer analogy. Measurements are conducted on the first-stage rotor blade of a three-stage axial turbine at 2400rpm (positive off-design), 2550rpm (design), and 3000rpm (negative off-design), respectively. The effect of three blowing ratios is also studied. The blade Reynolds number based on the axial chord length and the exit velocity is 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and outlet Mach numbers are 0.1 and 0.3, respectively. The film cooling effectiveness distributions are presented along with discussions on the influence of rotational speed (off design incidence angle), blowing ratio, and upstream nozzle wakes around the leading edge region. Results show that rotation has a significant impact on the leading edge film cooling distributions with the average film cooling effectiveness in the leading edge region decreasing with an increase in the rotational speed (negative incidence angle).


2014 ◽  
Vol 554 ◽  
pp. 317-321
Author(s):  
Mohamad Rasidi Bin Pairan ◽  
Norzelawati Binti Asmuin ◽  
Hamidon bin Salleh

Film cooling is one of the cooling techniques applied to the turbine blade. Gas turbine used film cooling technique to protect turbine blade from directly expose to the hot gas to avoid the blade from defect. The focus of this investigation is to investigate the effect of embedded three difference depth of trench at coolant holes geometry. Comparisons are made at four difference blowing ratios which are 1.0, 1.25 and 1.5. Three configuration leading edge with depth Case A (0.0125D), Case B (0.0350D) and Case C (0.713D) were compared to leading edge without trench. Result shows that as blowing ratio increased from 1.0 to 1.25, the film cooling effectiveness is increase for leading edge without trench and also for all cases. However when the blowing ratio is increase to 1.5, film cooling effectiveness is decrease for all cases. Overall the Case B with blowing ratio 1.25 has the best film cooling effectiveness with significant improvement compared to leading edge without trench and with trench Case A and Case C.


Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions were measured on the leading edge region of a rotating blade using a Pressure Sensitive Paint technique. The film cooling effectiveness information was obtained from the oxygen concentration difference between air and nitrogen or air and CO2 injection cases by applying the mass transfer analogy. The blowing ratio was controlled to be 0.5, 1.0, and 2.0 while the density ratios of 1.0 and 1.5 were obtained using nitrogen and CO2 as coolant gases, respectively. Tests were conducted on the first stage rotor of a 3-stage axial turbine at 2400, 2550, and 3000 rpm. The Reynolds number based on the axial chord length and the exit velocity was 200,000 and the total to exit pressure ratio was 1.12 for the first rotor. The film cooling effectiveness distributions were presented along with the discussions on the influences of blowing ratio, density ratio, and vortices around the leading edge region at different rotational speeds.


2011 ◽  
Vol 383-390 ◽  
pp. 3963-3968
Author(s):  
Shao Hua Li ◽  
Li Mei Du ◽  
Wen Hua Dong ◽  
Ling Zhang

In this paper, a numerical simulation was performed to investigate heat transferring characteristics on the leading edge of a blade with three rows of holes of film-cooling using Realizable k- model. Three rows of holes were located on the suction side leading edge stagnation line and the pressure surface. The difference of the cooling efficiency and the heat transfer of the three rows of holes on the suction side and pressure side were analyzed; the heat transfer and film cooling effectiveness distribution in the region of leading edge are expounded under different momentum rations.The results show that under the same condition, the cooling effectiveness on the pressure side is more obvious than the suction side, but the heat transfer is better on the suction side than the pressure side. The stronger momentum rations are more effective cooling than the heat transfer system.


Author(s):  
Eiji Sakai ◽  
Toshihiko Takahashi ◽  
Ken-ichi Funazaki ◽  
Hamidon Bin Salleh ◽  
Kazunori Watanabe

This study describes a 3-D computation for film cooling effectiveness investigation using Fluent commercial code, version 6.2. Two configurations are examined: (1) Flat plate, and (2) Semi-cylindrical leading edge with a flat after-body. Three different RANS turbulence models and DES based on Spalart-Allmaras model are utilized to see the difference in accuracy between DES and RANS approaches. Similar to the previous RANS simulation, lateral spreading of film cooling is under-estimated in the RANS simulation, while in the DES, lateral spreading of film cooling is enhanced and shows adequate agreement with the previous experiments. The effects of velocity magnitude and orientation of plenum flow on film cooling effectiveness are also studied in the flat plate configuration. The plenum flow is eventually found to have a strong impact on the flow structure in the cooling pipe, and the distorted velocity profile in the pipe consequently lowers film cooling effectiveness, in particularly at high blowing ratio.


Author(s):  
Ding Luo ◽  
Ruishan Lu ◽  
Jiang Lei ◽  
Lesley M. Wright

Abstract In this paper film-cooling effectiveness of two rows of cylindrical holes located on the endwall upstream of a vane is investigated numerically. Five different cooling schemes, including three schemes of double rows cylindrical holes (β = −45°, 0°, 45°), and two schemes of Double-jet film cooling (DJFC) holes (β = −45°, 45° and β = 45°, −45°), are arranged on the endwall at four blowing ratios (M = 0.5, 1.0, 1.5, 2.0). Both primary effect (on downstream endwall) and secondary effect (on pressure and suction surfaces) of the endwall film cooling are considered. ICEM is used to mesh the computational domain, and simulation is carried out by ANSYS 14.0. The result shows that cooling jets with compound angles can effectively suppress lifting-off and increase film-cooling effectiveness. In addition, at low blowing ratios, it is difficult for jets no matter what directions to cool the neighborhood of the leading edge and the pressure side due to the effect of horseshoe vortices. However, passage vortices have different effects on the cooling jets with different compound angles which will result in different film coverage on both endwall and airfoil.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Holger Werschnik ◽  
Jonathan Hilgert ◽  
Manuel Wilhelm ◽  
Martin Bruschewski ◽  
Heinz-Peter Schiffer

At the large scale turbine rig (LSTR) at Technische Universität Darmstadt, Darmstadt, Germany, the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage is examined. The rig resembles a high pressure turbine and is scaled to low Mach numbers. A baseline configuration with an axial inflow and a swirling inflow representative for a lean combustor is modeled by swirl generators, whose clocking position toward the nozzle guide vane (NGV) leading edge can be varied. A staggered double-row of cylindrical film cooling holes on the endwall is examined. The effect of swirling inflow on heat transfer and film cooling effectiveness is studied, while the coolant mass flux rate is varied. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. Boundary layer, turbulence, and five-hole probe measurements as well as numerical simulations complement the examination. The results for swirling inflow show a decrease of film cooling effectiveness of up to 35% and an increase of Nusselt numbers of 10–20% in comparison to the baseline case for low coolant mass flux rates. For higher coolant injection, the heat transfer is on a similar level as the baseline. The differences vary depending on the clocking position. The turbulence intensity is increased to 30% for swirling inflow.


Sign in / Sign up

Export Citation Format

Share Document