Simplified Protrusion Drag and Heat Transfer Modelling of Bolts on a Rotating Disc

Author(s):  
Sulfickerali Noor Mohamed ◽  
John W. Chew ◽  
Nick J. Hills

The main objective of the present work was to develop a porous media based axi-symmetric bolt protrusion drag and heat transfer model for fast and efficient aero-thermal coupling of a rotor-stator cavity with rotor mounted bolts. Traditionally, detailed non axisymmetric features like bolts, holes etc. are either approximated through windage correlations or ignored which could result in significant difference in disc temperature prediction. Protrusion drag and windage work terms are introduced into the bolt porous zone in an axisymmetric model to simulate non axisymmetric effects of protrusions. The drag, tangential velocity and adiabatic disc surface temperature results from the simplified axisymmetric model are compared with 3D CFD model predictions and experimental data for a range of rotational and throughflow Reynolds numbers. The simplified porous media based models are found to predict the drag and windage heat transfer with reasonable accuracy compared to 3D sector CFD results. However, 3D sector CFD under-predicts the high core flow swirl and mixing of the hot fluid withinthe rotor-stator cavity and also under-predicts the adiabatic disc surface temperature inboard of the bolt, compared to experimental data, particularly for the rotationally dominated flow case. The comparison of disc temperature with measurements for the through flow dominated case of λT=0.2 and Cw = 105 is satisfactory.

2021 ◽  
Author(s):  
Vassilis Z. Antonopoulos ◽  
Soultana K. Gianniou

Abstract The knowledge of micrometeorological conditions on water surface of impoundments is crucial for the better modeling of the temperature and water quality parameters distribution in the water body and against the climatic changes. Water temperature distribution is an important factor that affects most physical, chemical and biological processes and reactions occurring in lakes. In this work, different processes of water surface temperature of lake’s estimation based on the energy balance method are considered. The daily meteorological data and the simulation results of energy balance components from an integrated heat transfer model for two complete years as well as the lake’s characteristics for Vegoritis lake in northern Greece were used is this analysis.The simulation results of energy balance components from a heat transfer model are considered as the reference and more accurate procedure to estimate water surface temperature. These results are used to compare the other processes. The examined processes include a) models of heat storage changes in relationship to net radiation (Qt(Rn) values, b) net radiation estimation with different approaches, as the process of Slob’s equation with adjusted coefficients to lake data, and c) ANNs models with different architecture and input variables. The results show that the model of heat balance describes the water surface temperature with high accuracy (r2=0.916, RMSE=2.422oC). The ANN(5,6,1) model in which Tsw(i-1) is incorporated in the input variables was considered the better of all other ANN structures (r2=0.995, RMSE=0.490oC). The use of different approaches for simulating net radiation (Rn) and Qt(Rn) in the equation of water surface temperature gives results with lower accuracy.


2005 ◽  
Vol 128 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.


Author(s):  
Pratik S. Bhansali ◽  
Srinath V. Ekkad

Abstract Heat transfer over rotating surfaces is of particular interest in rotating machinery such as gas turbine engines. The rotation of the gas turbine disc creates a radially outward flow on the disc surface, which may lead to ingress of hot gases into the narrow cavity between the disc and the stator. Impingement of cooling jet is an effective way of cooling the disc and countering the ingress of the hot gases. Present study focusses on investigating the effect of introducing pin-fins over the rotating disc on the heat transfer. The jet Reynolds number has been varied from 5000 to 18000, and the rotating Reynolds number has been varied from 5487 to 12803 for an aluminum disc of thickness 6.35mm and diameter 10.16 cm, over which square pins have been arranged in an inline fashion. Steady state temperature measurements have been taken using thermocouples embedded in the disc close to the target surface, and area average Nusselt number has been calculated. The effects of varying the height of the pin-fins, distance between nozzle and the disc surface and the inclination of the impinging jet with the axis of rotation have also been studied. The results have been compared with those for a smooth aluminum disc of equal dimensions and without any pin-fins. The average Nusselt number is significantly enhanced by the presence of pin fins. In the impingement dominant regime, where the effect of disc rotation is minimal for a smooth disc, the heat transfer increases with rotational speed in case of pin fins. The effect of inclination angle of the impinging jet is insignificant in the range explored in this paper (0° to 20°).


Author(s):  
B. G. Vinod Kumar ◽  
John W. Chew ◽  
Nicholas J. Hills

Design and optimization of an efficient internal air system of a gas turbine requires thorough understanding of the flow and heat transfer in rotating disc cavities. The present study is devoted to numerical modelling of flow and heat transfer in a cylindrical cavity with radial inflow and comparison with the available experimental data. The simulations are carried out with axi-symmetric and 3-D sector models for various inlet swirl and rotational Reynolds numbers upto 2.1×106. The pressure coefficients and Nusselt numbers are compared with the available experimental data and integral method solutions. Two popular eddy viscosity models, the Spalart-Allmaras and the k-ε, and a Reynolds stress model have been used. For cases with particularly strong vortex behaviour the eddy viscosity models show some shortcomings with the Spalart-Allmaras model giving slightly better results than the k-ε model. Use of the Reynolds stress model improved the agreement with measurements for such cases. The integral method results are also found to agree well with the measurements.


Author(s):  
Zixiang Sun ◽  
Klas Lindblad ◽  
John W. Chew ◽  
Colin Young

The buoyancy-affected flow in rotating disc cavities, such as occurs in compressor disc stacks, is known to be complex and difficult to predict. In the present work large eddy simulation (LES) and unsteady Reynolds-averaged Navier-Stokes (RANS) solutions are compared with other workers’ measurements from an engine representative test rig. The Smagorinsky-Lilly model was employed in the LES simulations, and the RNG k-ε turbulence model was used in the RANS modelling. Three test cases were investigated in a range of Grashof number Gr = 1.87 to 7.41×108 and buoyancy number Bo = 1.65 to 11.5. Consistent with experimental observation, strong unsteadiness was clearly observed in the results of both models, however the LES results exhibited a finer flow structure than the RANS solution. The LES model also achieved significantly better agreement with velocity and heat transfer measurements than the RANS model. Also, temperature contours obtained from the LES results have a finer structure than the tangential velocity contours. Based on the results obtained in this work, further application of LES to flows of industrial complexity is recommended.


2011 ◽  
Vol 80-81 ◽  
pp. 81-85
Author(s):  
Jiao Cheng Ma ◽  
Hui Zhao Sun ◽  
Xue Bin Wang ◽  
Xia Lv

In order to more accurate simulation the solidification of billet continuous casting. The measured shell thickness and surface temperature have been used to revise the heat transfer model. The calculated results of the model are in excellent agreement with the experimental ones based on an actual casting machine. The revised model can excellent to simulate the billet solidification process. So it provides the possibility for better simulation the dynamic solidification process and optimizing of the secondary cooling water.


Author(s):  
Hasan Karabay ◽  
Robert Pilbrow ◽  
Michael Wilson ◽  
J. Michael Owen

This paper summarises and extends recent theoretical, computational and experimental research into the fluid mechanics, thermodynamics and heat transfer characteristics of the so-called cover-plate pre-swirl system. Experiments were carried out in a purpose-built rotating-disc rig, and the Reynolds-averaged Navier-Stokes equations were solved using 2D (axisymmetric) and 3D computational codes, both of which incorporated low-Reynolds-number k-ε turbulence models. The free-vortex flow, which occurs inside the rotating cavity between the disc and cover-plate, is controlled principally by the pre-swirl ratio, βp: this is the ratio of the tangential velocity of the air leaving the nozzles to that of the rotating disc. Computed values of the tangential velocity are in good agreement with measurements, and computed distributions of pressure are in close agreement with those predicted by a one-dimensional theoretical model. It is shown theoretically and computationally that there is a critical pre-swirl ratio, βp,crit, for which the frictional moment on the rotating discs is zero, and there is an optimal pre-swirl ratio, βp,opt, where the average Nusselt number is a minimum. Computations show that, for βp < βp,opt, the temperature of the blade-cooling air decreases as βp increases; for βp > βp,opt, whether the temperature of the cooling air increases or decreases as βp increases depends on the flow conditions and on the temperature difference between the disc and the air. Owing to the three-dimensional flow and heat transfer near the blade-cooling holes, and to unquantifiable uncertainties in the experimental measurements, there were significant differences between the computed and measured temperatures of the blade-cooling air. In the main, the 3D computations produced smaller differences than the 2D computations.


2012 ◽  
Vol 457-458 ◽  
pp. 138-141
Author(s):  
Yi Wang ◽  
Xin Jian Ma

This paper describes the new development of the breakout prediction technique based a heat transfer model. The model aims to minimize the variation in surface temperature. The breakout prediction system of slab continuous casting has been analyzed with consideration of the principles, model and thermocouples installation. The system has been designed and implemented in the steel plants.


Sign in / Sign up

Export Citation Format

Share Document