Effects of Turbulence Intensity and Scale on Turbine Blade Heat Transfer

Author(s):  
Robert J. Boyle ◽  
Ali A. Ameri

The effects of turbulence intensity and length scale on turbine blade heat transfer and aerodynamic losses are investigated. The importance of freestream turbulence on heat transfer increases with Reynolds number and turbulence intensity, and future turbine blade Reynolds numbers are expected to be higher than in current engines. Even when film cooling is used, accurate knowledge of baseline heat transfer distributions are needed. Heat flux reductions due to film cooling depend on the ratio of film cooled-to-solid blade heat transfer coefficients. Comparisons are made between published experimental data and published correlations for leading edge heat transfer. Stagnation region heat transfer rates of vanes and blades of high pressure turbines can be nearly double those predicted when predictions neglect freestream turbulence effects. Correlations which included the scale of turbulence gave better agreement with data. Two-dimensional Navier-Stokes analysis were done for several existing test cases where measures of the turbulence scale are available. The test cases had significant regions where the flow was not fully turbulent. Freestream turbulence increases laminar heat transfer, but has little influence on turbulent heat transfer. The Navier-Stokes analysis included a model for the effects of high freestream turbulence on laminar or transitioning boundary layers. Comparisons were made with vane and rotor blade data, as well as with high Reynolds number test data that simulated the favorable pressure gradient regions seen in the forward portions of turbine blades. Predictions of surface heat transfer showed the appropriate trends in heat transfer with turbulence intensity and turbulence scale. However, the absolute level of agreement indicated that further verification of approaches to predicting turbulence intensity and scale effects is needed. Significant increases in losses were calculated for vane and rotor blade geometries as inlet turbulence increased.

2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitches of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at the exit Mach numbers of 0.55, 0.78, and 1.03, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6×105, 8×105, and 11×105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared with the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.


2000 ◽  
Vol 122 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Gm. S. Azad ◽  
Je-Chin Han ◽  
Shuye Teng ◽  
Robert J. Boyle

Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a two-dimensional model of a first-stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1, 1.5, and 2.5 percent of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 and 9.7 percent at the cascade inlet. Static pressure measurements are made in the midspan and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip heat transfer coefficient distribution. Heat transfer coefficient also increases about 15–20 percent along the leakage flow path at higher turbulence intensity level of 9.7 over 6.1 percent. [S0889-504X(00)00404-9]


Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitch of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.78 and 1.03 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6 × 105, 8 × 105, and 11 × 105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared to the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.


1999 ◽  
Vol 121 (4) ◽  
pp. 694-702 ◽  
Author(s):  
R. J. Boyle ◽  
F. F. Simon

The effect of a Mach number correction on a model for predicting the length of transition was investigated. The transition length decreases as the turbulent spot production rate increases. Many of the data for predicting the spot production rate come from low-speed flow experiments. Recent data and analysis showed that the spot production rate is affected by Mach number. The degree of agreement between analysis and data for turbine blade heat transfer without film cooling is strongly dependent on accurately predicting the length of transition. Consequently, turbine blade heat transfer data sets were used to validate a transition length turbulence model. A method for modifying models for the length of transition to account for Mach number effects is presented. The modification was made to two transition length models. The modified models were incorporated into the two-dimensional Navier–Stokes code, RVCQ3D. Comparisons were made between predicted and measured midspan surface heat transfer for stator and rotor turbine blades. The results showed that accounting for Mach number effects significantly improved the agreement with the experimental data.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film-cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film-cooling holes on the pressure-side near the tip region and the tip surface along the camber line. A hue detection based transient liquid crystal technique was used to measure heat transfer coefficients and film-cooling effectiveness. All measurements were done for the tip gap clearances of 1.0%,1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1 × 106 and the overall pressure ratio was 1.32. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film-cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film-cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
C. Reagle ◽  
A. Newman ◽  
S. Xue ◽  
W. Ng ◽  
S. Ekkad ◽  
...  

This paper describes a method for obtaining surface and endwall heat transfer in an uncooled transonic cascade facility using infrared thermography measurements. Midspan heat transfer coefficient results are first presented for an engine representative first stage nozzle guide vane at exit Mach number of 0.77, Reynolds number of 1.05×106 and freestream turbulence intensity of 16%. The results obtained from infrared thermography are compared with previously published results using thin film gauges in the same facility on the same geometry. There is generally good agreement between the two measurement techniques in both trend and overall level of heat transfer coefficient over the vane surface. Stanton number contours are then presented for a blade endwall at exit Mach number of 0.88, Reynolds number of 1.70×106 and freestream turbulence intensity of 8%. Infrared thermography results are qualitatively compared with results from a published work obtained with liquid crystals at similar flow conditions. Results are qualitatively in agreement.


Author(s):  
R. J. Boyle ◽  
P. W. Giel

An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.


Author(s):  
R. J. Boyle ◽  
C. M. Spuckler ◽  
B. L. Lucci

Predicted turbine vane heat transfer for a rough surface over a wide range of test conditions was compared with experimental data. Inlet pressures varied between 0.2 and 1 atm., and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single rough surface vane was used for the tests, the effective roughness in wall units varied by more than a factor of ten. Comparisons were made for both high and low freestream turbulence intensities. Two-dimensional Navier-Stokes heat transfer predictions were obtained using the code RVCQ3D. Results were obtained using both algebraic and k–ω turbulence models. The algebraic model incorporated the Cebeci-Chang roughness model. The k–ω turbulence model accounts for roughness in the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k–ω results agreed better with the data than the Cebeci-Chang model. The low Reynolds number k–ω model did not accurately account for roughness at low freestream turbulence levels. The high Reynolds number version of this model was more suitable at low freestream turbulence levels.


Sign in / Sign up

Export Citation Format

Share Document