Numerical Study of the Film Cooling With Discrete-Hole Arrangement on a Cut Back Squealer Blade Tip

Author(s):  
Xiang Zhang ◽  
Zhong Yang ◽  
Shuqing Tian ◽  
Haiteng Ma

Detailed numerical investigations of film cooling effectiveness are conducted for the holes on the tip cavity floor and near the tip pressure side. The tested blade tip is a squealer with the trailing rim wall cut to allow the accumulated coolant in the cavity to escape and cool the trailing edge. The heat transfer coefficients on the un-cooled flat and cutback squealer blade tip are studied with numerical and experimental methods. Three dust purging holes with different diameters are arranged along the camber line, which forms the basic cooled case (PG case). Additional six tip cavity holes are arranged on cavity floor near the suction side rim (PG-TF case). Another row of angled twenty-one holes is arranged along the pressure side just below the tip based on the PG case (PG-PSF case). The coolant supply pressure ratios are controlled to be 1, 1.11, and 1.22 respectively, offering local blowing ratio from 0 to 2.5. Results show that the dust purging flow cooling performance increases with the cavity depth. Discrete holes on the cavity floor offer a well-distributed coolant, which refines the cooling effect on the cavity floor. The PG-PSF case with cooling holes on the pressure side has the best overall cooling performance with more coolant consumed, when PR ≥ 1.22. However, maintaining the same coolant mass flow the PG-TF case has the best cooling performance, and the margin between PG-TF and PG-PSF case decreases with mass flow. The moving shroud cases reveal that blade movement will cause significant negative impacts on film cooling effectiveness.

Author(s):  
M. Rezasoltani ◽  
K. Lu ◽  
M. T. Schobeiri ◽  
J. C. Han

Detailed numerical and experimental investigations of film cooling effectiveness were conducted on the blade tips of the first rotor row pertaining to a three-stage research turbine. Four different blade tip ejection configurations were utilized to determine the impact of the hole arrangements on the film cooling effectiveness. plane tip with tip hole cooling, squealer tip with tip hole cooling, plane tip with pressure-side-edge compound angle hole cooling and squealer tip with pressure-side-edge compound angle hole cooling. To avoid rotor imbalance, every pair is installed radially. Film cooling effectiveness measurements were performed for three blowing ratios (M) of 0.75, 1.25 and 1.75. Film cooling data was also obtained for three rotational speeds; 3000 rpm (reference condition), 2550 rpm and 2000 rpm. Film cooling measurements were performed using pressure sensitive paint (PSP) technique. In a parallel effort, extensive numerical investigations of the above configurations were performed to give a better view of flow behavior using a commercially available code. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University.


Author(s):  
Andrew J. Saul ◽  
Peter T. Ireland ◽  
John D. Coull ◽  
Tsun Holt Wong ◽  
Haidong Li ◽  
...  

The effect of film cooling on a high pressure turbine blade with an open squealer tip has been examined in a high speed linear cascade. The cascade operates at engine realistic Mach and Reynolds numbers, producing transonic flow conditions over the blade tip. Tests have been performed on two uncooled tip geometries with differing pressure side rim edge radii, and a cooled tip matching one of the uncooled cases. The pressure sensitive paint technique has been used to measure adiabatic film cooling effectiveness on the blade tip at a range of tip gaps and coolant mass flow rates. Complementary tip heat transfer coefficients (HTC) have been measured using transient infrared thermography, and the effects of the coolant film on the tip heat transfer and engine heat flux examined. The uncooled data show that the tip heat transfer coefficient distribution is governed by the nature of flow reattachments and impingements. The squealer tip can be broken down into three regions, each exhibiting a distinct response to a change in the tip gap, depending on the local behaviour of the overtip leakage flow. The edge radius of the pressure side rim causes the overtip leakage flow to change dramatically at low clearance. Complementary CFD shows that the addition of casing motion causes no further change on the pressure side rim. Injected coolant interacts with the overtip leakage flow, which can locally enhance the tip heat transfer coefficient compared to the uncooled tip. The film effectiveness is dependent on both the coolant mass flow rate and tip clearance. At increased coolant mass flow, areas of high film effectiveness on the pressure side rim coincide strongly with a net heat flux reduction and in the subsonic tip region with low heat transfer coefficient.


2000 ◽  
Vol 123 (2) ◽  
pp. 222-230 ◽  
Author(s):  
R. J. Goldstein ◽  
P. Jin

A special naphthalene sublimation technique is used to study the film cooling performance downstream of one row of holes of 35 deg inclination angle and 45 deg compound angle with 3d hole spacing and relatively small hole length to diameter ratio (6.3). Both film cooling effectiveness and mass/heat transfer coefficients are determined for blowing rates from 0.5 to 2.0 with density ratio of unity. The mass transfer coefficient is measured using pure air film injection, while the film cooling effectiveness is derived from comparison of mass transfer coefficients obtained following injection of naphthalene-vapor-saturated air with that of pure air injection. This technique enables one to obtain detailed local information on film cooling performance. General agreement is found in local film cooling effectiveness when compared with previous experiments. The laterally averaged effectiveness with compound angle injection is higher than that with inclined holes immediately downstream of injection at a blowing rate of 0.5 and is higher at all locations downstream of injection at larger blowing rates. A large variation of mass transfer coefficients in the lateral direction is observed in the present study. At low blowing rates of 0.5 and 1.0, the laterally averaged mass transfer coefficient is close to that of injection without compound angle. At the highest blowing rate used (2.0), the asymmetric vortex motion under the jets increases the mass transfer coefficient drastically ten diameters downstream of injection.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

Secondary holes to a main film cooling hole are used to improve film cooling performance by creating anti-kidney vortices. The effects of injection angle of the secondary holes on both film cooling effectiveness and surrounding thermal and flow fields are investigated in this numerical study. Two kinds of primary hole shapes are adopted. One is a cylindrical hole, the other is a horn-shaped hole which is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. Two smaller cylindrical holes, the secondary holes, are located symmetrically about the centerline and downstream of the primary hole. Three compound injection angles (α = 30°, 45° and 60°, β = 30°) of the secondary holes are analyzed while the injection angle of the primary hole is kept at 45°. Cases with various blowing ratios are computed. It is shown from the simulation that cooling effectiveness of secondary holes with a horn-shaped primary hole is better than that with a cylindrical primary hole, especially at high blowing ratios. With a cylindrical primary hole, increasing inclination angle of the secondary holes provides better cooling effectiveness because the anti-kidney vortices created by shallow secondary holes cannot counteract the kidney vortex pairs adequately, enhancing mixing of main flow and coolant. For secondary holes with a horn-shaped primary hole, large secondary hole inclination angles provide better cooling performance at low blowing ratios; but, at high blowing ratios, secondary holes with small inclination angles are more effective, as the film coverage becomes wider in the downstream area.


2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


Author(s):  
D. H. Zhang ◽  
L. Sun ◽  
Q. Y. Chen ◽  
M. Lin ◽  
M. Zeng ◽  
...  

Embedding a row of typical cylindrical holes in a transverse slot can improve the cooling performance. Rectangular slots can increase the cooling effectiveness but is at the cost of decreasing of discharge coefficients. An experiment is conducted to examine the effects of an overlying transverse inclined trench on the film cooling performance of axial holes. Four different trench configurations are tested including the baseline inclined cylindrical holes. The influence of the geometry of the upstream lip of the exit trench and the geometry of the inlet trench on cooling performance is examined. Detailed film cooling effectiveness and heat transfer coefficients are obtained separately using the steady state IR thermography technique. The discharge coefficients are also acquired to evaluate the aerodynamic performance of different hole configurations. The results show that the film cooling holes with both ends embedded in slots can provide higher film cooling effectiveness and lower heat transfer coefficients; it also can provide higher discharge coefficients whilst retaining the mechanical strength of a row of discrete holes. The cooling performance and the aerodynamic performance of the holes with both ends embedded in inclined slots are superior to the holes with only exit trenched. To a certain extent, the configuration of the upstream lip of the exit trench affects the cooling performance of the downstream of the trench. The filleting for the film hole inlet avail the improvement of the cooling effect, but not for the film hole outlet. Comparing film cooling with embedded holes to unembedded holes, the overall heat flux ratio shows that the film holes with both ends embedded in slots and filleting for the film hole inlet can produce the highest heat flux reduction.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

The detailed distributions of heat transfer coefficient and film cooling effectiveness on a gas turbine blade tip were measured using a hue detection based transient liquid crystal technique. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on cascade exit velocity and axial chord length was 1.1 × 106 and the total turning angle of the blade was 97.7°. The overall pressure ratio was 1.32 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The blade model was equipped with a single row of film cooling holes at both the tip portion along the camber line and near the tip region of the pressure-side. All measurements were made at the three different tip gap clearances of 1%, 1.5%, and 2.5% of blade span and the three blowing ratios of 0.5, 1.0, and 2.0. Results showed that, in general, heat transfer coefficient and film effectiveness increased with increasing tip gap clearance. As blowing ratio increased, heat transfer coefficient decreased, while film effectiveness increased. Results also showed that adding pressure-side coolant injection would further decrease blade tip heat transfer coefficient but increase film effectiveness.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical simulations were performed to predict the effect of cavity purge flow on the rotating blade platform in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. Simulations were carried out with a sliding mesh for the rotor under three rotating speeds (2000, 2550 and 3000 rpm) and three purge-to-mainstream mass flow ratios (0.5%, 1% and 1.5%) to investigate the effects of rotating speed and coolant purging rate on the rotating blade platform film cooling. The adiabatic film cooling effectiveness was evaluated using the adiabatic wall temperatures with and without coolant purging to examine the true effect of coolant protection. The film cooling effectiveness increases with increasing coolant purging flow ratio from 0.5% to 1.5% of mainstream. Higher rotating speed also enhances film cooling effectiveness for the range of rotating speed considered. The predicted laterally averaged adiabatic film cooling effectiveness is in good agreement with the corresponding experiment data except for the platform leading edge region. However, the detailed effectiveness distribution on the platform is not well predicted by this study. In addition, the detailed instantaneous film cooling effectiveness and the associated heat transfer coefficients for four different time phases are also reported.


Author(s):  
Ruiqin Wang ◽  
Xin Yan

Abstract To cool a high-pressure gas turbine blade, many rows of cooling holes with different arrangements and configurations are manufactured to achieve higher cooling effect and lower aerodynamic loss. To evaluate the heat transfer and film cooling effect in the full-cooled turbine blade, efficient numerical simulations are required in the design and performance optimization processes. From the view of numerical accuracy, the structured grids have to be employed because of higher resolution in flow and heat transfer than the unstructured grids. Because many splitting, attaching and merging manipulations are involved in meshing the cooling features and curved boundaries, it is very complex and time-consuming for a researcher to generate multi-block structured grids for a full-cooled gas turbine blade. As a result, in the industrial applications, almost all researchers preferred to generate unstructured grids instead of structured grids for the full-cooled blade. Unlike the previous research, the aim of this study is to apply the Background-Grid Based Mapping (BGBM) method proposed in Part I to generate multi-block structured grids for a full-cooled gas turbine vane. With the strategy of BGBM method, meshes were conveniently generated in the computational space with simple geometrical features and plain interfaces, and then were mapped back into physical space to obtain the multi-block structured grids which can be used for numerical simulations. With the experimental data, the present numerical methods and BGBM strategy were carefully validated. Then, the flow and film cooling performance in the full-cooled NASA GE-E3 nozzle guided vane were numerically investigated. The effects of coolant mass flow rate and land extensions on film cooling effectiveness were discussed. The results show that film cooling effectiveness near the stagnation point is the lowest and film cooling effectiveness on the pressure side is slightly higher than that on the suction side. When the coolant mass flow rate increases up to the value of 1.5 design flow, the relative outflow mass flow rates of cooling hole arrays and slots are no longer affected by the increase of the coolant flow rate. At half design flow, the outflow mass flow rates of No.5 hole-array to No.10 hole-array are almost zero, and the area-averaged film cooling effectiveness on vane surface is as low as 0.268. Compared with the cases of half design flow and double design flow, better film cooling performance is obtained in the cases of design flow and 1.5 design flow. Compared with the vane without lands, the area-average cooling effectiveness on vane surface is slightly higher for the vane with lands. Land extensions have a considerable influence on film cooling performance in the cutback region.


1999 ◽  
Vol 121 (2) ◽  
pp. 225-232 ◽  
Author(s):  
R. J. Goldstein ◽  
P. Jin ◽  
R. L. Olson

A special naphthalene sublimation technique is used to study the film cooling performance downstream of one row of holes of 35 deg inclination angle with 3d hole spacing and relatively small hole length to diameter ratio (L/d = 6.3). Both film cooling effectiveness and mass/heat transfer coefficient are determined for blowing rates from 0.5 to 2.0 with density ratio of 1.0. The mass transfer coefficient is measured using pure air film injection, while the film cooling effectiveness is derived from comparison of mass transfer coefficients obtained following injection of naphthalene-vapor-saturated air with those from pure air injection. This technique enables one to obtain detailed local information on film cooling performance. The laterally averaged and local film cooling effectiveness agree with previous experiments. The difference between mass/heat transfer coefficients and previous heat transfer results indicates that conduction error may play an important role in the earlier heat transfer measurements.


Sign in / Sign up

Export Citation Format

Share Document