Performance Simulation of 3-Stage Gas Turbine CHP Plant for Marine Applications

Author(s):  
Zhitao Wang ◽  
Yi-Guang Li ◽  
Shuying Li

Energy saving and environment become important issues in power and propulsion generation industry. One of such examples is the marine transportation where a lot of energy from consumed fuel is wasted in exhaust and emissions are produced in vessel propulsion systems. The focus of this research is to look at a typical marine propulsion system where gas turbines are the prime movers and to investigate the potentials of a novel 3-stage gas turbine combined heat and power (CHP) system for marine applications. Such a CHP system may include a topping gas turbine Brayton cycle, an intermediate water Rankine cycle (WRC), and a bottoming organic Rankine cycle (ORC). In the system, gas turbine is connected with a generator to produce electricity, water Rankine cycle produces superheated steam driving steam turbine for electricity generation and/or for heating, and organic Rankine cycle is used to produce electricity by recycling low temperature energy. A thermodynamic model for the 3-stage CHP system is established to simulate the performance of the system at different power demand operating conditions. The developed performance simulation system has been applied to a typical model vessel propulsion system application. Based on the simulated results, it is evident that compared with a conventional 2-stage CHP cycle where only gas turbine topping cycle and water Rankine bottoming cycle are included, the introduction of the organic Rankine cycle can increase the power output by about 7% and improve the cycle thermal efficiency by about 3.52%.

Author(s):  
Zhitao Wang ◽  
Haoda Lei ◽  
Yi-Guang Li ◽  
Shuying Li ◽  
Weitian Wang

Nowadays, the rising demand for energy and serious environmental pollution become the motive to improve the energy structure, saving energy and optimize energy utilization. Based on a gas turbine, a marine multistage gas turbine combined heat and power (CHP) structure is proposed. The CHP system includes the top gas turbine Brayton cycle, the intermediate water Rankine cycle (WRC) and the bottom organic Rankine cycle (ORC). According to the method of screening organic Rankine cycle refrigerant to select the appropriate organic working fluids, and their physical characteristics are described. Based on the modular modelling method, the 3-stage CHP system is established. In order to more effectively absorb low temperature waste heat, three different kinds of 3-stage CHP structures were designed to recover the heat in the exhaust gas from the heat recover steam generator (HRSG). The thermodynamic model of the combined heat and power system of marine multistage gas turbine was used to simulate the performance of three different types of 3-stage CHP structures, the optimal 3-stage CHP structure was selected by comparing and analyzing the simulation results. Based on the simulation results of the design point, it is found that the introduction of the optimal 3-stage CHP structure can increase the power output by about 8.5% and improve the cycle thermal efficiency by about 4.32% compared with a conventional 2-stage CHP cycle where only gas turbine topping cycle and water Rankine bottoming cycle are included.


2014 ◽  
Vol 136 (07) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article focuses on the use of gas turbines for electrical power, mechanical drive, and marine applications. Marine gas turbines are used to generate electrical power for propulsion and shipboard use. Combined-cycle electric power plants, made possible by the gas turbine, continue to grow in size and unmatched thermal efficiency. These plants combine the use of the gas turbine Brayton cycle with that of the steam turbine Rankine cycle. As future combined cycle plants are introduced, we can expect higher efficiencies to be reached. Since almost all recent and new U.S. electrical power plants are powered by natural gas-burning, high-efficiency gas turbines, one has solid evidence of their contribution to the greenhouse gas reduction. If coal-fired thermal power plants, with a fuel-to-electricity efficiency of around 33%, are swapped out for combined-cycle power plants with efficiencies on the order of 60%, it will lead to a 70% reduction in carbon emissions per unit of electricity produced.


Author(s):  
Michael Welch ◽  
Nicola Rossetti

Historically gas turbine power plants have become more efficient and reduced the installed cost/MW by developing larger gas turbines and installing them in combined cycle configuration with a steam turbine. These large gas turbines have been designed to maintain high exhaust gas temperatures to maximise the power generation from the steam turbine and achieve the highest overall electrical efficiencies possible. However, in today’s electricity market, with more emphasis on decentralised power generation, especially in emerging nations, and increasing penetration of intermittent renewable power generation, this solution may not be flexible enough to meet operator demands. An alternative solution to using one or two large gas turbines in a large central combined cycle power plant is to design and install multiple smaller decentralised power plant, based on multiple gas turbines with individual outputs below 100MW, to provide the operational flexibility required and enable this smaller power plant to maintain a high efficiency and low emissions profile over a wide load range. This option helps maintain security of power supplies, as well as providing enhanced operational flexibility through the ability to turn turbines on and off as necessary to match the load demand. The smaller gas turbines though tend not to have been optimised for combined cycle operation, and their exhaust gas temperatures may not be sufficiently high, especially under part load conditions, to generate steam at the conditions needed to achieve a high overall electrical efficiency. ORC technology, thanks to the use of specific organic working fluids, permits efficient exploitation of low temperatures exhaust gas streams, as could be the case for smaller gas turbines, especially when working on poor quality fuels. This paper looks at how a decentralised power plant could be designed using Organic Rankine Cycle (ORC) in place of the conventional steam Rankine Cycle to maximise power generation efficiency and flexibility, while still offering a highly competitive installed cost. Combined cycle power generation utilising ORC technology offers a solution that also has environmental benefits in a water-constrained World. The paper also investigates the differences in plant performance for ORC designs utilising direct heating of the ORC working fluid compared to those using an intermediate thermal oil heating loop, and looks at the challenges involved in connecting multiple gas turbines to a single ORC turbo-generator to keep installed costs to a minimum.


2018 ◽  
Vol 140 (03) ◽  
pp. S54-S55
Author(s):  
Uwe Schütz

This article describes features and advantages of new mobile gas turbine with a wide range of applications. The market for mobile gas turbines is continuously growing. Mobile units are also an ideal choice when it comes to making large power capacities available on a short-term basis, for example, for major events, prolonged downtimes at other power stations, or power-intensive applications such as mining or shale gas extraction. If the electricity requirements exceed the level that can normally be demanded of a mobile application, an SGT-A45 installation can be modified to form a combined-cycle power plant to further improve its efficiency. In remote locations, this can be achieved using an Organic Rankine Cycle (ORC), to eliminate the need for water and water treatment systems, and to optimize energy recovery from the SGT-A45 off-gas stream at a relatively low temperature. The use of a direct heat exchanger, in which the ORC working fluid is evaporated by the off-gas stream from the gas turbine, can boost the system’s output capacity by more than 20 percent.


2019 ◽  
Vol 113 ◽  
pp. 03007
Author(s):  
Gustavo Bonolo de Campos ◽  
Cleverson Bringhenti ◽  
Alberto Traverso ◽  
Jesuino Takachi Tomita

Current energy conversion machines such as the micro gas turbine can be improved by harvesting the low-grade energy of the exhaust. A prominent option for such is the organic Rankine cycle due to its relatively efficient and reliable design. This manuscript presents a review on the subject and is the first step toward the design of an organic Rankine cycle bottoming a 100 kWe recuperated gas turbine. After introducing and covering the historical development of the technology, appropriate guidelines for defining the cycle arrangement and selecting the fluid are presented. At last, the viability of the cycle is assessed by assuming an appropriate efficiency value and general cost functions. The organic Rankine is expected to generate an additional 16.6 kWe of power, increasing the electrical efficiency from 30 to 35%. However, the capital cost increase was estimated in 48%.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1499 ◽  
Author(s):  
Dominika Matuszewska ◽  
Piotr Olczak

Power conversion systems based on the Organic Rankine Cycle (ORC) have been identified as a potential technology especially in converting low-grade renewable sources or waste heat. However, it is necessary to improve efficiency of ORC systems. This paper focuses on use of low geothermal resources (for temperature range of 80–128 °C and mass flow 100 kg/s) by using modified ORC. A modification of conventional binary power plant is conducted by combining gas turbines to increase quality of steam from a geothermal well. An analysis has been conducted for three different working fluids: R245fa, R1233zd(E) and R600. The paper discusses the impact of parameter changes not only on system efficiency but on other performance indicators. The results were compared with a conventional geothermal Organic Rankine Cycle (ORC). Increasing of geothermal steam quality by supplying exhaust gas from a gas turbine to the installation has a positive effect on the system efficiency and power. The highest efficiency of the modified ORC system has been obtained for R1233zd(E) as a working fluid and it reaches values from 12.21% to 19.20% (depending on the temperature of the geothermal brine). In comparison, an ORC system without gas turbine support reaches values from 9.43% to 17.54%.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879407 ◽  
Author(s):  
Wei Liu ◽  
Xiaoyun Zhang ◽  
Ningbo Zhao ◽  
Chunying Shu ◽  
Shanke Zhang ◽  
...  

Intercooled cycle gas turbine has great potential in improving the output power because of the low energy consumption of high-pressure compressor. In order to more efficiently recovery and utilize the waste heat of the intercooled system, an organic Rankine cycle power generation system is developed to replace the traditional intercooled system in this study. Considering the effects of different kinds of organic working fluids, the thermodynamic performance of organic Rankine cycle power generation system is investigated in detail. On this basis, the sensitivity analyses of some key parameters are conducted to study the operating improvements of organic Rankine cycle power generation system. The results indicate that the integration of organic Rankine cycle and intercooled cycle gas turbine not only can be used for waste heat power generation but also increases the output power and efficiency of intercooled cycle gas turbine by selecting the organic working fluids of n-butane (R600), n-pentane (R601), toluene, and n-heptane. And compared to the others, organic Rankine cycle power generation system with toluene exhibits the best performance. The maximum enhancements of output power and thermal efficiency are 6.08% and 2.14%, respectively. Moreover, it is also concluded that both ambient temperatures and intercooled cycle gas turbine operating conditions are very important factors affecting the operating performances of organic Rankine cycle power generation system.


Author(s):  
Jong Jun Lee ◽  
Young Sik Kim ◽  
Tong Seop Kim ◽  
Jeong Lak Sohn ◽  
Yong Jin Joo

This paper explains a performance simulation program for power generation gas turbines and its application to an IGCC gas turbine. The program has a modular structure and both the stage-level and entire component-level models were adopted. Stage-by-stage calculations were used in the compressor and the turbine. In particular, the compressor module is based on a stage-stacking method and is capable of simulating the effect of variable stator vanes. The combustor model has the capability of dealing with various fuels including syngas. The turbine module is capable of estimating blade cooling performance. The program can be easily extended to other applied cycles such as recuperated and reheated cycles because the program structure is fully modular. The program was verified for simple cycle commercial engines. In addition, the program was applied to the gas turbine in an IGCC plant. Influences of major system integration parameters on the operating conditions of the compressor and turbine as well as on engine performance were analyzed.


Author(s):  
David J. Bricknell

Within the marine world gas turbines operate in niche ship types only, but why is this? This paper considers the ship types that have adopted marine gas turbines and the ship characteristics that determine the choice of the propulsion system and prime mover type. Ship determined characteristics include; speed, power density, general arrangements, operating profile, fuel type, fuel consumption, maintenance opportunity, manpower and others. Gas turbine characteristics derived from their parentage — either aero or industrial — influence the characteristics available from the marine gas turbine. Historical marine applications are reviewed and new marine applications, influenced by developments with new marine gas turbines are considered both in the developed but evolving naval markets and within the growing but focused commercial marine sector. Propulsion system selection is also influenced by the prevailing and emerging propulsion system technologies, particularly with transmission systems which influence the choice of the prime mover, their number and specific power, and their disposition in the ship.


2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Sign in / Sign up

Export Citation Format

Share Document