Thermal Stability of Nickel-Base Alloys

Author(s):  
D. A. Shifler ◽  
L. Sanchez ◽  
N. Kedir ◽  
D. Faucett ◽  
R. Mahapatra ◽  
...  

The thermal stability of three Ni-base samples was assessed at 1850F (1010°C) and 2000F (1093°C) in ambient air as a function of exposure time ranging from 500 to 2000 hrs. Assessments of thermal stability of the samples were made using weight change, oxidation, microstructural evolution, and post-exposure mechanical properties such as Vickers microhardness and compressive yield stress. The three samples included bare Alloy “A” (9Cr-6Al-1.5Hf), Alloy “A” with an overlay coating, and bare Alloy “B” (12Cr-3Al), were not much different in compositions. At 1850F, oxidation as measured by weight change was insignificant up to 2000 h in all the three samples. At 2000F, however, noticeable weight change occurred, increasing linearly with time all in the three samples. The oxidation penetration from surface to matrix for these samples was more intense when exposed to above 1000 hours, forming various oxides, gamma-prime (γ′) depletion zones, and TCP phases. The size and area fraction of γ′ precipitates were determined as a function of temperature and exposure time. Post-exposure mechanical properties were also assessed through Vickers hardness and compressive yield stress. A maximum change in Vickers hardness was about 10% at both temperatures up to 2000 hrs. The change in compressive yield stress was more pronounced than the change in Vickers hardness as a function of thermal exposure and time.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


2021 ◽  
Vol 13 (38) ◽  
pp. 45736-45743
Author(s):  
Jian Zhang ◽  
Cheng Zhang ◽  
Ting Zhu ◽  
Yonggao Yan ◽  
Xianli Su ◽  
...  

2015 ◽  
Vol 55 (12) ◽  
pp. 2783-2793 ◽  
Author(s):  
Qiulong Li ◽  
Lin Chen ◽  
Jinjin Zhang ◽  
Kang Zheng ◽  
Xian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document