Effect of Free-Stream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors

Author(s):  
Jonna Tiainen ◽  
Ahti Jaatinen-Värri ◽  
Aki Grönman ◽  
Teemu Turunen-Saaresti ◽  
Jari Backman

The estimation of boundary layer losses requires the accurate specification of the free-stream velocity, which is not straightforward in centrifugal compressor blade passages. This challenge stems from the jet-wake flow structure, where the free-stream velocity between the blades cannot be clearly specified. In addition, the relative velocity decreases due to adverse pressure gradient. Therefore, the common assumption of a single free-stream velocity over the blade surface might not be valid in centrifugal compressors. Generally in turbomachinery, the losses in the blade cascade boundary layers are estimated e.g. with different loss co-efficients, but they often rely on the assumption of a uniform flow field between the blades. To give guidelines for the estimation of the mentioned losses in highly distorted centrifugal compressor flow fields, this paper discusses the difficulties in the calculation of the boundary layer thickness in the compressor blade passages, compares different free-stream velocity definitions, and demonstrates their effect on estimated boundary layer losses. Additionally, a hybrid method is proposed to overcome the challenges of defining a boundary layer in centrifugal compressors.

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jonna Tiainen ◽  
Ahti Jaatinen-Värri ◽  
Aki Grönman ◽  
Teemu Turunen-Saaresti ◽  
Jari Backman

The estimation of boundary layer losses requires the accurate specification of the freestream velocity, which is not straightforward in centrifugal compressor blade passages. This challenge stems from the jet-wake flow structure, where the freestream velocity between the blades cannot be clearly specified. In addition, the relative velocity decreases due to adverse pressure gradient. Therefore, the common assumption of a single freestream velocity over the blade surface might not be valid in centrifugal compressors. Generally in turbomachinery, the losses in the blade cascade boundary layers are estimated, e.g., with different loss coefficients, but they often rely on the assumption of a uniform flow field between the blades. To give guidelines for the estimation of the mentioned losses in highly distorted centrifugal compressor flow fields, this paper discusses the difficulties in the calculation of the boundary layer thickness in the compressor blade passages, compares different freestream velocity definitions, and demonstrates their effect on estimated boundary layer losses. Additionally, a hybrid method is proposed to overcome the challenges of defining a boundary layer in centrifugal compressors.


Author(s):  
Samuel Addai ◽  
Xingjun Fang ◽  
Afua A Mante ◽  
Mark F. Tachie

Abstract Particle image velocimetry is used to experimentally study the wake dynamics behind a near-wall square cylinder subjected to a thick oncoming turbulent boundary layer. The turbulent boundary layer thickness was 3.6 times the cylinder height (h) while the Reynolds number based on the free-stream velocity and the cylinder height was 12750. The gap distance (G) between the bottom face of the cylinder and the wall was varied, resulting in gap ratios (G/h) of 0, 0.3, 0.5, 1.0, 2.0, 4.0 and 8.0. The effects of varying the gap ratio on the mean flow, Reynolds stresses, triple velocity correlation, two-point autocorrelation and the unsteady wake characteristics were examined. The results indicate that as gap ratio decreases, asymmetry in the wake flow becomes more pronounced and the size of the mean separation bubbles increases. The magnitudes of the Reynolds stresses and triple velocity correlations generally decrease with decreasing gap ratio. Moreover, the size of the large-scale structures increases with decreasing gap ratio and the critical gap ratio, below which Kármán vortex shedding suppression occurs, is found to be 0.3. The dominant Strouhal number in the wake flow expressed in terms of the streamwise mean velocity at the cylinder vertical midpoint increases as gap ratio decreases while that based on the free-stream velocity is less sensitive to gap ratio for the offset cases (G/h > 0).


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
T. Hayat ◽  
Z. Iqbal ◽  
M. Mustafa ◽  
S. Obaidat

This communication studies the flow and heat transfer characteristics over a continuously moving surface in the presence of a free stream velocity. The Jeffrey fluid is treated as a rheological model. The series expressions of velocity and temperature fields are constructed by applying the homotopy analysis method (HAM). The influence of emerging parameters such as local Deborah number (β), the ratio of relaxation and retardation times (λ2), the Prandtl number (Pr), and the Eckert number (Ec) on the velocity and temperature profiles are presented in the form of graphical and tabulated results for different values of λ. It is found that the boundary layer thickness is an increasing function of local Deborah number (β). However, the temperature and thermal boundary layer thickness decreases with the increasing values of local Deborah number (β).


1966 ◽  
Vol 88 (3) ◽  
pp. 249-256 ◽  
Author(s):  
L. H. Back ◽  
A. B. Witte

Laminar boundary-layer heat transfer and shear-stress predictions from existing similarity solutions are extended in an approximate way to perfect gas flows with a large free-stream velocity gradient parameter β and variable density-viscosity product ρμ across the boundary layer resulting from a highly cooled wall. The dimensionless enthalpy gradient at the wall gw′, to which the heat flux is related, is found not to vary appreciably with β. Thus the application of similarity solutions on a local basis to predict heat transfer from accelerated flows to an arbitrary surface may be a reasonable approximation involving a minimum amount of calculation time. Unlike gw′, the dimensionless velocity gradient at the wall fw″, to which the shear stress is related, is strongly dependent on β.


2015 ◽  
Vol 13 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Swati Mukhopadhyay

Abstract This paper presents the magnetohydrodynamic (MHD) boundary layer stagnation point flow with diffusion of chemically reactive species undergoing first-order chemical reaction over a permeable stretching sheet in presence of partial slip. With the help of similarity transformations, the partial differential equations corresponding to momentum and the concentration equations are transformed into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing value of the ratio of the free stream velocity and the stretching velocity. Velocity decreases with the increasing magnetic parameter when the free-stream velocity is less than the stretching velocity but the opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. With increasing velocity slip parameter, velocity increases when the free-stream velocity is greater than the stretching velocity. But the concentration decreases in this case. Concentration decreases with increasing mass slip parameter.


2000 ◽  
Vol 404 ◽  
pp. 345-378 ◽  
Author(s):  
TZONG-SHYNG LEU ◽  
CHIH-MING HO

The effect of base suction on a plane wake was found to produce significant changes in wake dynamics. The wake is produced by merging two boundary layers from the trailing edge of a splitter plate in a two-stream water tunnel. A threshold suction speed exists which is approximately equal to half of the free-stream velocity. If the suction speed is below the threshold, the wake flow is unstable. If the suction speed is above the threshold, the wake becomes stable and no vortex shedding is observed. In the present experiment, the suction technique can stabilize a wake at a maximum tested Reynolds number of 2000.The suction significantly reduces the length of the absolutely unstable region in the immediate vicinity of the trailing edge of the splitter plate and produces a non-parallel flow pattern, resulting in the breakdown of global instability. The global growth rate changes from positive (unstable flow) to negative (stable flow) at the suction speed equalling 0.46 of the free-stream velocity. The threshold suction speed can be accurately predicted by the global linear theory of Monkewitz et al. (1993) with a non-parallel flow correction.


Author(s):  
Weidong Shao ◽  
Jun Li

The aeroacoustical oscillation and acoustic field generated by subsonic flow grazing over open cavities has been investigated analytically and numerically. The tone generation mechanism is elucidated with an analytical model based on the coupling between shear layer instabilities and acoustic feedback loop. The near field turbulent flow is obtained using two-dimensional Large Eddy Simulation (LES). A special mesh is used to absorb propagating disturbances and prevent spurious numerical reflections. Comparisons with available experimental data demonstrate good agreement in both the frequency and amplitude of the aeroacoustical oscillation. The physical phenomenon of the noise generated by the feedback loop is discussed. The correlation analysis of primitive variables is also made to clarify the characteristics of wave propagation in space and time. The effects of free-stream Mach number and boundary layer thickness on pressure fluctuations within the cavity and the nature of the noise radiated to the far field are examined in detail. As free-stream Mach number increases velocity fluctuations and mass flux into the cavity increase, but the resonant Strouhal numbers slightly decrease. Both the resonant Strouhal numbers and sound pressure levels decrease with the increase of boundary layer thickness. Results indicate that the instability of the shear layer dominates both the frequency and amplitude of the aeroacoustical oscillation.


2000 ◽  
Vol 420 ◽  
pp. 47-83 ◽  
Author(s):  
NIKOLAUS A. ADAMS

The turbulent boundary layer along a compression ramp with a deflection angle of 18° at a free-stream Mach number of M = 3 and a Reynolds number of Reθ = 1685 with respect to free-stream quantities and mean momentum thickness at inflow is studied by direct numerical simulation. The conservation equations for mass, momentum, and energy are solved in generalized coordinates using a 5th-order hybrid compact- finite-difference-ENO scheme for the spatial discretization of the convective fluxes and 6th-order central compact finite differences for the diffusive fluxes. For time advancement a 3rd-order Runge–Kutta scheme is used. The computational domain is discretized with about 15 × 106 grid points. Turbulent inflow data are provided by a separate zero-pressure-gradient boundary-layer simulation. For statistical analysis, the flow is sampled 600 times over about 385 characteristic timescales δ0/U∞, defined by the mean boundary-layer thickness at inflow and the free-stream velocity. Diagnostics show that the numerical representation of the flow field is sufficiently well resolved.Near the corner, a small area of separated flow develops. The shock motion is limited to less than about 10% of the mean boundary-layer thickness. The shock oscillates slightly around its mean location with a frequency of similar magnitude to the bursting frequency of the incoming boundary layer. Turbulent fluctuations are significantly amplified owing to the shock–boundary-layer interaction. Reynolds-stress maxima are amplified by a factor of about 4. Turbulent normal and shear stresses are amplified differently, resulting in a change of the structure parameter. Compressibility affects the turbulence structure in the interaction area around the corner and during the relaxation after reattachment downstream of the corner. Correlations involving pressure fluctuations are significantly enhanced in these regions. The strong Reynolds analogy which suggests a perfect correlation between velocity and temperature fluctuations is found to be invalid in the interaction area.


Sign in / Sign up

Export Citation Format

Share Document