Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jonna Tiainen ◽  
Ahti Jaatinen-Värri ◽  
Aki Grönman ◽  
Teemu Turunen-Saaresti ◽  
Jari Backman

The estimation of boundary layer losses requires the accurate specification of the freestream velocity, which is not straightforward in centrifugal compressor blade passages. This challenge stems from the jet-wake flow structure, where the freestream velocity between the blades cannot be clearly specified. In addition, the relative velocity decreases due to adverse pressure gradient. Therefore, the common assumption of a single freestream velocity over the blade surface might not be valid in centrifugal compressors. Generally in turbomachinery, the losses in the blade cascade boundary layers are estimated, e.g., with different loss coefficients, but they often rely on the assumption of a uniform flow field between the blades. To give guidelines for the estimation of the mentioned losses in highly distorted centrifugal compressor flow fields, this paper discusses the difficulties in the calculation of the boundary layer thickness in the compressor blade passages, compares different freestream velocity definitions, and demonstrates their effect on estimated boundary layer losses. Additionally, a hybrid method is proposed to overcome the challenges of defining a boundary layer in centrifugal compressors.

Author(s):  
Jonna Tiainen ◽  
Ahti Jaatinen-Värri ◽  
Aki Grönman ◽  
Teemu Turunen-Saaresti ◽  
Jari Backman

The estimation of boundary layer losses requires the accurate specification of the free-stream velocity, which is not straightforward in centrifugal compressor blade passages. This challenge stems from the jet-wake flow structure, where the free-stream velocity between the blades cannot be clearly specified. In addition, the relative velocity decreases due to adverse pressure gradient. Therefore, the common assumption of a single free-stream velocity over the blade surface might not be valid in centrifugal compressors. Generally in turbomachinery, the losses in the blade cascade boundary layers are estimated e.g. with different loss co-efficients, but they often rely on the assumption of a uniform flow field between the blades. To give guidelines for the estimation of the mentioned losses in highly distorted centrifugal compressor flow fields, this paper discusses the difficulties in the calculation of the boundary layer thickness in the compressor blade passages, compares different free-stream velocity definitions, and demonstrates their effect on estimated boundary layer losses. Additionally, a hybrid method is proposed to overcome the challenges of defining a boundary layer in centrifugal compressors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunxin Xu ◽  
Weichao Shi ◽  
Abel Arredondo-Galeana ◽  
Lei Mei ◽  
Yigit Kemal Demirel

AbstractSymbiotic relationships have developed through natural evolution. For example, that of the remora fish attached to the body of a shark. From the remora’s perspective, this could be associated to an increased hydrodynamic efficiency in swimming and this needs to be investigated. To understand the remora's swimming strategy in the attachment state, a systematic study has been conducted using the commercial Computational Fluid Dynamics (CFD) software, STAR-CCM + to analyse and compare the resistance characteristics of the remora in attached swimming conditions. Two fundamental questions are addressed: what is the effect of the developed boundary layer flow and the effect of the adverse pressure gradient on the remora’s hydrodynamic characteristics? According to the results, the resistance of the remora can generally be halved when attached. Besides, the results have also demonstrated that the drag reduction rate increases with the developed boundary layer thickness and can be estimated using the boundary layer thickness ratio and velocity deficit. The paper demonstrates that the most frequent attachment locations are also the areas that provide the maximum drag reduction rate.


2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


1978 ◽  
Vol 100 (4) ◽  
pp. 690-696 ◽  
Author(s):  
A. D. Anderson ◽  
T. J. Dahm

Solutions of the two-dimensional, unsteady integral momentum equation are obtained via the method of characteristics for two limiting modes of light gas launcher operation, the “constant base pressure gun” and the “simple wave gun”. Example predictions of boundary layer thickness and heat transfer are presented for a particular 1 in. hydrogen gun operated in each of these modes. Results for the constant base pressure gun are also presented in an approximate, more general form.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2020 ◽  
Vol 9 (4) ◽  
pp. 375-387
Author(s):  
Amit Parmar ◽  
Rakesh Choudhary ◽  
Krishna Agarwal

The present study shows the impacts of Williamson fluid with magnetohydrodynamics flow containing gyrotactic microorganisms under the variable fluid property past permeable stretching sheet. Variable Prandtl number, mass Schmidt number, and gyrotactic microorganisms Schmidt number were all considered. The momentum, energy, mass, and microorganism equations’ governing PDEs are converted into nonlinear coupled ODEs and numerically solved with the bvp4c solver using suitable transformations. The main outcome of this study is that Williamson fluid parameter constantly decreases in velocity profile, however reverse effects can be shown in temperature profile. Also, M parameter and Kp parameter enhance the heat transfer rate, concentration rate and microorganisms boundary layer thickness but declines in momentum boundary layer thickness and velocity profile. The aim of this research is to see how velocity slide, temperature jump, concentration slip, and microorganism slip affect MHD Williamson fluid flow with gyrotactic microorganisms over a leaky surface embedded in spongy medium, with non-linear radiation and non-linear chemical reaction.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yanfeng Zhang ◽  
Shuzhen Hu ◽  
Ali Mahallati ◽  
Xue-Feng Zhang ◽  
Edward Vlasic

This work, a continuation of a series of investigations on the aerodynamics of aggressive interturbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out by varying duct outlet-to-inlet area ratios (ARs) and mean rise angles while keeping the duct length-to-inlet height ratio, Reynolds number, and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the boundary layer separation and counter-rotating vortices in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend, whereas the duct AR mainly governed the second bend's static pressure rise. The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing's first bend and moved farther upstream. At high ARs, a two-dimensional separation appeared on the casing and resulted in increased loss. Pressure loss penalties increased significantly with increasing duct mean rise angle and AR.


Sign in / Sign up

Export Citation Format

Share Document