Convective Scaling of Intrinsic Thermo-Acoustic Eigenfrequencies of a Premixed Swirl Combustor

Author(s):  
Alp Albayrak ◽  
Thomas Steinbacher ◽  
Thomas Komarek ◽  
Wolfgang Polifke

For velocity sensitive premixed flames, intrinsic thermoacoustic (ITA) feedback results from flow-flame-acoustic interactions as follows: perturbations of velocity upstream of the flame result in modulations of the heat release rate, which in turn generate acoustic waves that travel in the downstream as well as the upstream direction. The latter perturb again the upstream velocity, and thus close the ITA feedback loop. This feedback mechanism exhibits resonance frequencies that are not related to acoustic eigenfrequencies of a combustor and generates — in additional to acoustic modes — so-called ITA modes. In this work spectral distributions of the sound pressure level (SPL) observed in a perfectly premixed, swirl stabilized combustion test rig are analyzed. Various burner configurations and operating points are investigated. Spectral peaks in the SPL data for stable as well as for unstable cases are interpreted with the help of a newly developed simple criterion for the prediction of burner intrinsic ITA modes. This criterion extends the known −π measure for the flame transfer function (FTF) by including the burner acoustic. This way, the peaks in the SPL spectra are identified to correspond to either ITA or acoustic modes. It is found that ITA modes are prevalent in this particular combustor. Their frequencies change significantly with the power rating (bulk flow velocity) and the axial position of the swirler, but are insensitive to changes in the length of the combustion chamber. It is argued that the resonance frequencies of the ITA feedback loop are governed by convective time scales. For that reason, they arise at rather low frequencies, which scale with the bulk flow velocity.

Author(s):  
Alp Albayrak ◽  
Thomas Steinbacher ◽  
Thomas Komarek ◽  
Wolfgang Polifke

Spectral distributions of the sound pressure level (SPL) observed in a premixed, swirl stabilized combustion test rig are scrutinized. Spectral peaks in the SPL for stable as well as unstable cases are interpreted with the help of a novel criterion for the resonance frequencies of the intrinsic thermo-acoustic (ITA) feedback loop. This criterion takes into the account the flow inertia of the burner and indicates that in the limit of very large flow inertia, ITA resonance should appear at frequencies where the phase of the flame transfer function (FTF) approaches −π/2. Conversely, in the limiting case of vanishing flow inertia, the new criterion agrees with previous results, which state that ITA modes may arise when the phase of the FTF is close to −π. Relying on the novel criterion, peaks in the SPL spectra are identified to correspond to either ITA or acoustic modes. Various combustor configurations are investigated over a range of operating conditions. It is found that in this particular combustor, ITA modes are prevalent and dominate the unstable cases. Remarkably, the ITA frequencies change significantly with the bulk flow velocity and the position of the swirler but are almost insensitive to changes in the length of the combustion chamber (CC). These observations imply that the resonance frequencies of the ITA feedback loop are governed by convective time scales. A scaling rule for ITA frequencies that relies on a model for the overall convective flame time lag shows good consistency for all operating conditions considered in this study.


2021 ◽  
Vol 11 (3) ◽  
pp. 1057
Author(s):  
Vladimir Golubev

We discuss herein recent experimental and numerical studies examining resonant flow-acoustic feedback–loop interactions in transitional airfoils (i.e., possessing a notable area of laminar-to-turbulent boundary-layer transition) characteristic of low-to-medium Reynolds number flow regimes. Such interactions are commonly attributed to the viscous dynamics of the convected boundary-layer structures scattering into acoustic waves at the trailing edge which propagate upstream and re-excite the convected vortical structures. While it has been long suspected that the acoustic feedback mechanism is responsible for the highly pronounced, often multi-tonal response, the exact reason of how the boundary-layer instability structures could reach a sufficient degree of amplification to sustain the feedback-loop process and exhibit specific tonal signature remained unclear. This review thus pays particular attention to the critical role of the separation bubble in the feedback process and emphasizes the complementary roles of the experimental and numerical works in elucidating an intricate connection between the airfoil radiated tonal acoustic signature and the properties of the separation zones as determined by airfoil geometry and flow regimes.


2021 ◽  
Vol 62 (4) ◽  
Author(s):  
Antje Feldhusen-Hoffmann ◽  
Christian Lagemann ◽  
Simon Loosen ◽  
Pascal Meysonnat ◽  
Michael Klaas ◽  
...  

AbstractThe buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by a feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. High-speed particle-image velocimetry measurements are performed to investigate this feedback loop in transonic buffet flow over a supercritical DRA 2303 airfoil. The freestream Mach number is $$M_{\infty } = 0.73$$ M ∞ = 0.73 , the angle of attack is $$\alpha = 3.5^{\circ }$$ α = 3 . 5 ∘ , and the chord-based Reynolds number is $${\mathrm{Re}}_{c} = 1.9\times 10^6$$ Re c = 1.9 × 10 6 . The obtained velocity fields are processed by sparsity-promoting dynamic mode decomposition to identify the dominant dynamic features contributing strongest to the buffet flow field. Two pronounced dynamic modes are found which confirm the presence of two main features of the proposed feedback loop. One mode is related to the shock wave oscillation frequency and its shape includes the movement of the shock wave and the coupled pulsation of the recirculation region downstream of the shock wave. The other pronounced mode represents the disturbances which form the downstream propagating part of the proposed feedback loop. The frequency of this mode corresponds to the frequency of the acoustic waves which are generated by these downstream traveling disturbances and which form the upstream propagating part of the proposed feedback loop. In this study, the post-processing, i.e., the DMD, is highlighted to substantiate the existence of this vortex mode. It is this vortex mode that via the Lamb vector excites the shock oscillations. The measurement data based DMD results confirm numerical findings, i.e., the dominant buffet and vortex modes are in good agreement with the feedback loop suggested by Lee. Graphic abstract


2016 ◽  
Vol 684 ◽  
pp. 111-119 ◽  
Author(s):  
Stanislav Rafaelevich Abulkhanov ◽  
Dmitrii Sergeevich Goryainov

Natural frequencies of the four upgraded front searchlight designs were received in ANSYS software environment. In the first case serial front searchlight incandescent electric lamp was replaced by a LED group which was mounted on the one-piece cylinder backing. The second front searchlight design had the backing which was upgraded by a radial ribs and concentric rigidity ferrules. Analyze of the backing deformation character by vibrations with the natural frequencies established a number of design solutions which make it possible to raise front searchlight vibration resistance. By the front searchlight model were established that the natural frequencies of the searchlight with the one-piece backing appertain to the whole range of the train vibrations. Natural frequencies of the backing with perforation, rigidity ferrules, and radial ribs appertain to the low frequencies of the railway locomotive vibrations spectrum. On basis of devised methodology of analyze of the deformation and natural frequencies of the surface carrying a LED group the vibration-proof searchlight design was introduced and researched.


2016 ◽  
Vol 65 (3) ◽  
pp. 601-613 ◽  
Author(s):  
Nataliya Strokina ◽  
Joni-Kristian Kamarainen ◽  
Jeffrey A. Tuhtan ◽  
Juan Francisco Fuentes-Perez ◽  
Maarja Kruusmaa

2021 ◽  
Author(s):  
Jens Satria Müller ◽  
Finn Lückoff ◽  
Thomas Ludwig Kaiser ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract In order to determine the flame transfer function of a combustion system only based on isothermal flow field data, three governing mechanisms have been identified which need to be modeled: swirl fluctuations, equivalence fluctuations and velocity fluctuations excited by planar acoustic waves. This study focuses on the generation and propagation of swirl fluctuations downstream of a radial swirl combustor under isothermal conditions. Swirl fluctuations are generated experimentally by imposing acoustic perturbations. Time-resolved longitudinal and crosswise PIV measurements are conducted inside the mixing tube and combustion chamber to quantify the evolution of the swirl fluctuations. The measured flow response is decomposed using spectral proper orthogonal decomposition to unravel the contributions of different dynamical modes. In addition a resolvent analysis is conducted based on the linearized Navier-Stokes equations to reveal the intrinsically most amplified flow structures. Both, the data-driven and analytic approach, show that inertial waves are indeed present in the flow response and an inherent flow instability downstream of the swirler, which confirms the recent theoretical work of Albayrak et al. (Journal of Fluid Mechanics, 879). However, the contribution of these inertial waves to the total swirl fluctuations turns out to be very small. This is suggested to be due to the very structured forcing at the swirler and the amplification of shear-driven modes which are expected to be much more influential for this type of swirler. Overall, this work confirms the presence of inertial waves in highly turbulent swirl combustors and evaluates its relevance for industry-related configurations. It further outlines a methodology to analyze and predict their characteristics based on mean fields only, which is applicable for complex geometries of industrial relevance.


2017 ◽  
Vol 24 (19) ◽  
pp. 4484-4491 ◽  
Author(s):  
R Tikani ◽  
L Torfenezhad ◽  
M Mousavi ◽  
S Ziaei-Rad

Nowadays, environmental energy resources, especially mechanical vibrations, have attracted the attention of researchers to provide energy for low-power electronic circuits. A common method for environmental mechanical energy harvesting involves using piezoelectric materials. In this study, a spiral multimode piezoelectric energy harvester was designed and fabricated. To achieve wide bandwidth in low frequencies (below 15 Hz), the first three resonance frequencies of the beam were designed to be close to each other. To do this, the five lengths of the substrate layer were optimized by the Taguchi method, using an L27 orthogonal array. Each experiment of the Taguchi method was then simulated in ANSYS software. Next, the optimum level of each design variable was obtained. A test rig was then constructed based on the optimum design values and some experimental investigations were conducted. A good correlation was observed between measured and the finite element results.


Author(s):  
Vera Hoferichter ◽  
Thomas Sattelmayer

Lean premixed combustion is prevailing in gas turbines to minimize nitrogen oxide emissions. However, this technology bears the risk of flame flashback and thermoacoustic instabilities. Thermoacoustic instabilities induce velocity oscillations at the burner exit which, in turn, can trigger flame flashback. This article presents an experimental study at ambient conditions on the effect of longitudinal acoustic excitation on flashback in the boundary layer of a channel burner. The acoustic excitation simulates the effect of thermoacoustic instabilities. Flashback limits are determined for different excitation frequencies characterizing intermediate frequency dynamics in typical gas turbine combustors (100–350 Hz). The excitation amplitude is varied from 0% to 36% of the burner bulk flow velocity. For increasing excitation amplitude, the risk of flame flashback increases. This effect is strongest at low frequencies. For increasing excitation frequency, the influence of the velocity oscillations decreases as the flame has less time to follow the changes in bulk flow velocity. Two different flashback regimes can be distinguished based on excitation amplitude. For low excitation amplitudes, flashback conditions are reached if the minimum flow velocity in the excitation cycle falls below the flashback limit of unexcited unconfined flames. For higher excitation amplitudes, where the flame starts to periodically enter the burner duct, flashback is initiated if the maximum flow velocity in the excitation cycle is lower than the flashback limit of confined flames. Consequently, flashback limits of confined flames should also be considered in the design of gas turbine burners as a worst case scenario.


Author(s):  
Xuesong Wu

In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien–Schlichting (T–S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T–S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic ‘twin boundary layers’ that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer.


Sign in / Sign up

Export Citation Format

Share Document