Pump Grooved Seals: A CFD Approach to Improve Bulk-Flow Model Predictions

Author(s):  
Tingcheng Wu ◽  
Luis San Andrés

Abstract In multiple stage centrifugal pumps, balance pistons, often comprising a grooved annular seal, equilibrate the full pressure rise across the pump. Grooves in the stator break the evolution of fluid swirl and increase mechanical energy dissipation; hence, a grooved seal offers a lesser leakage and lower cross-coupled stiffness than a similar size uniform clearance seal. To date bulk-flow models (BFMs) expediently predict leakage and rotor dynamic force coefficients of grooved seals; however, they lack accuracy for any other geometry besides rectangular. Note scalloped and triangular (serrated) groove seals are not uncommon. In these cases, computational fluid dynamics (CFD) models seals of complex shape to produce leakage and force coefficients. Alas CFD is not yet ready for routine engineer practice. Hence, an intermediate procedure presently takes an accurate two-dimensional (2D) CFD model of a smaller flow region, namely a single groove and adjacent land, to produce stator and rotor surface wall friction factors, expressed as functions of the Reynolds numbers, for integration into an existing BFM and ready prediction of seal leakage and force coefficients. The selected groove-land section is well within the seal length and far away from the effects of the inlet condition. The analysis takes three water lubricated seals with distinct groove shapes: rectangular, scalloped and triangular. Each seal, with length/diameter L/D = 0.4, has 44 grooves of shallow depth dg ∼ clearance Cr, and operates at a rotor speed equal to 5,588 rpm (78 m/s surface speed) and with a pressure drop of 14.9 MPa. The method validity is asserted when 2D (single groove-land) and 3D (whole seal) predictions for pressure and velocity fields are compared against each other. The CFD predictions, 2D and 3D, show the triangular groove seal has the largest leakage, 41% greater than the rectangular groove seal does, albeit producing the smallest cross-coupled stiffnesses and whirl frequency ratio. On the other hand, the triangular groove seal has the largest direct stiffness and damping coefficients. The scalloped groove seal shows similar rotordynamic force coefficients as the rectangular groove seal but leaks 13% more. For the three seal groove types, the modified BFM predicts leakage that is less than 6% away from that delivered by CFD, whereas the seal stiffnesses (both direct and cross-coupled) differ by 13%, the direct damping coefficients by 18%, and the added mass coefficients are within 30%. The procedure introduced extends the applicability of a BFM to predict the dynamic performance of grooved seals with distinctive shapes.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Tingcheng Wu ◽  
Luis San Andrés

In multiple stage centrifugal pumps, balance pistons, often comprising a grooved annular seal, equilibrate the full pressure rise across the pump. Grooves in the stator break the evolution of fluid swirl and increase mechanical energy dissipation; hence, a grooved seal offers a lesser leakage and lower cross-coupled stiffness than a similar size uniform clearance seal. To date, bulk-flow modelbulk-flow models (BFMs) expediently predict leakage and rotor dynamic force coefficients of grooved seals; however, they lack accuracy for any other geometry besides rectangular. Note that scalloped and triangular (serrated) groove seals are not uncommon. In these cases, computational fluid dynamics (CFD) models seals of complex shape to produce leakage and force coefficients. Alas, CFD is not yet ready for routine engineer practice. Hence, an intermediate procedure presently takes an accurate two-dimensional (2D) CFD model of a smaller flow region, namely a single groove and adjacent land, to produce stator and rotor surface wall friction factors, expressed as functions of the Reynolds numbers, for integration into an existing BFM and ready prediction of seal leakage and force coefficients. The selected groove-land section is well within the seal length and far away from the effects of the inlet condition. The analysis takes three water lubricated seals with distinct groove shapes: rectangular, scalloped, and triangular. Each seal, with length/diameter L/D = 0.4, has 44 grooves of shallow depth dg ∼ clearance Cr and operates at a rotor speed equal to 5,588 rpm (78 m/s surface speed) and with a pressure drop of 14.9 MPa. The method validity is asserted when 2D (single groove-land) and three-dimensional (3D) (whole seal) predictions for pressure and velocity fields are compared against each other. The CFD predictions, 2D and 3D, show that the triangular groove seal has the largest leakage, 41% greater than the rectangular groove seal does, albeit producing the smallest cross-coupled stiffnesses and whirl frequency ratio (WFR). On the other hand, the triangular groove seal has the largest direct stiffness and damping coefficients. The scalloped groove seal shows similar rotordynamic force coefficients as the rectangular groove seal but leaks 13% more. For the three seal groove types, the modified BFM predicts leakage that is less than 6% away from that delivered by CFD, whereas the seal stiffnesses (both direct and cross-coupled) differ by 13%, the direct damping coefficients by 18%, and the added mass coefficients are within 30%. The procedure introduced extends the applicability of a BFM to predict the dynamic performance of grooved seals with distinctive shapes.


2021 ◽  
pp. 1-31
Author(s):  
Xueliang Lu ◽  
Luis San Andres ◽  
Jing Yang

Abstract Seals in multiple phase rotordynamic pumps must operate without compromising system efficiency and stability. Both field operation and laboratory experiments show that seals supplied with a gas in liquid mixture (bubbly flow) can produce rotordynamic instability and excessive rotor vibrations. This paper advances a nonhomogeneous bulk flow model (NHBFM) for the prediction of the leakage and dynamic force coefficients of uniform clearance annular seals lubricated with gas in liquid mixtures. Compared to a homogeneous BFM (HBFM), the current model includes diffusion coefficients in the momentum transport equations and a field equation for the transport of the gas volume fraction (GVF). Published experimental leakage and dynamic force coefficients for two seals supplied with an air in oil mixture whose GVF varies from 0 (pure liquid) to 20% serve to validate the novel model as well as to benchmark it against predictions from a HBFM. The first seal withstands a large pressure drop (~ 38 bar) and the shaft speed equals 7.5 krpm. The second seal restricts a small pressure drop (1.6 bar) as the shaft turns at 3.5 krpm. The first seal is typical as a balance piston whereas the second seal is found as a neck-ring seal in an impeller. For the high pressure seal and inlet GVF = 0.1, the flow is mostly homogeneous as the maximum diffusion velocity at the seal exit plane is just ~0.1% of the liquid flow velocity. Thus, both the NHBFM and HBFM predict similar flow fields, leakage (mass flow rate) and drag torque. The difference between the predicted leakage and measurement is less than 5%. The NHBFM direct stiffness (K) agrees with the experimental results and reduces faster with inlet GVF than the HBFM K. Both direct damping (C) and cross-coupled stiffness (k) increase with inlet GVF < 0.1.Compared to the test data, the two models generally under predict C and k by ~ 25%. Both models deliver a whirl frequency ratio (fw) ~ 0.3 for the pure liquid seal, hence closely matching the test data. fw raises to ~0.35 as the GVF approaches 0.1. For the low pressure seal the flow is laminar, the experimental results and both NHBFM and HBFM predict a null direct stiffness (K). At an inlet GVF = 0.2, the NHBFM predicted added mass (M) is ~30 % below the experimental result while the HBFM predicts a null M. C and k predicted by both models are within the uncertainty of the experimental results. For operation with either a pure liquid or a mixture (GVF = 0.2), both models deliver fw = 0.5 and equal to the experimental finding. The comparisons of predictions against experimental data demonstrate the NHBFM offers a marked improvement, in particular for the direct stiffness (K). The predictions reveal the fluid flow maintains the homogeneous character known at the inlet condition.


Author(s):  
Luis San Andre´s ◽  
Thomas Soulas ◽  
Florence Challier ◽  
Patrice Fayolle

The paper introduces a bulk-flow model for prediction of the static and dynamic force coefficients of angled injection Lomakin bearings. The analysis accounts for the flow interaction between the injection orifices, the supply circumferential groove, and the thin film lands. A one control-volume model in the groove is coupled to a bulk-flow model within the film lands of the bearing. Bernoulli-type relationships provide closure at the flow interfaces. Flow turbulence is accounted for with shear stress parameters and Moody’s friction factors. The flow equations are solved numerically using a robust computational method. Comparisons between predictions and experimental results for a tangential-against-rotation injection water Lomakin bearing show the novel model predicts well the leakage and direct stiffness and damping coefficients. Computed cross-coupled stiffness coefficients follow the experimental trends for increasing rotor speeds and supply pressures, but quantitative agreement remains poor. A parameter investigation evidences the effects of the groove and land geometries on the Lomakin bearing flowrate and force coefficients. The orifice injection angle does not influence the bearing static performance, although it largely affects its stability characteristics through the evolution of the cross-coupled stiffnesses. The predictions confirm the promising stabilizing effect of the tangential-against-rotation injection configuration. Two design parameters, comprising the feed orifices area and groove geometry, define the static and dynamic performance of Lomakin bearing. The analysis also shows that the film land clearance and length have a larger impact on the Lomakin bearing rotordynamic behavior than its groove depth and length.


Author(s):  
Luis San Andrés ◽  
Joshua Norsworthy

High speed rotors supported on bump-type foil bearings (BFBs) often suffer from large subsynchronous whirl motions. Mechanically preloading BFBs through shimming is a common, low cost practice that shows improvements in rotordynamic stability. However, there is an absence of empirical information related to the force coefficients (structural and rotordynamic) of shimmed BFBs. This paper details a concerted study toward assessing the effect of shimming on a first generation BFB (L = 38.1 mm and D = 36.5 mm). Three metal shims, 120 deg apart, are glued to the inner surface of the bearing cartridge and facing the underside of the bump foil strip. The shim sets are of identical thickness, either 30 μm or 50 μm. In static load tests, a bearing with shims shows a (nonlinear) structural stiffness larger than for the bearing without shims. Torque measurements during shaft acceleration also demonstrate a shimmed BFB has a larger friction coefficient. For a static load of 14.3 kPa, dynamic loads with a frequency sweep from 250 Hz to 450 Hz are exerted on the BFB, without and with shims, to estimate its rotordynamic force coefficients while operating at ∼50 krpm (833 Hz). Similar measurements are conducted without shaft rotation. Results are presented for the original BFB (without shims) and the two shimmed BFB configurations. The direct stiffnesses of the BFB, shimmed or not, increase with excitation frequency, thus evidencing a mild hardening effect. The BFB stiffness and damping coefficients decrease slightly for operation with rotor speed as opposed to the coefficients when the shaft is stationary. For frequencies above 300 Hz, the direct damping coefficients of the BFB with 50 μm thick shims are ∼30% larger than the coefficients of the original bearing. The bearing structural loss factor, a measure of its ability to dissipate mechanical energy, is derived from the direct stiffness and damping coefficients. The BFB with 50 μm thick shims has a 25% larger loss factor—average from test data collected at 300 Hz to 400 Hz—than the original BFB. Further measurements of rotor motions while the shaft accelerates to ∼50 krpm demonstrate the shimmed BFB (thickest shim set) effectively removes subsynchronous whirl motions amplitudes that were conspicuous when operating with the original bearing.


Author(s):  
Dara W. Childs ◽  
Clint R. Carter

Rotordynamic data are presented for a rocker-pivot tilting pad bearing in load-on-pad (LOP) configuration for (345–3101 kPa) unit loads and speeds from 4000 rpm to 13,000 rpm. The bearing was directly lubricated through a leading edge groove with five pads, 0.282 preload, 60% offset, 57.87 deg pad arc angle, 101.587 mm (3.9995 in.) rotor diameter, 0.1575 mm (0.0062 in.) diametral clearance, and 60.325 mm (2.375 in.) pad length. Measured results were reported for this bearing by Carter and Childs (2008, “Measurements Versus Predictions for the Rotordynamic Characteristics of a 5-Pad, Rocker-Pivot, Tilting-Pad Bearing in Load Between Pad Configuration,” ASME Paper No. GT2008-50069) in the load-between-pad (LBP) configuration. Results for the LOP are compared with predictions from a bulk-flow Navier–Stokes model (as utilized by San Andres (1991, “Effect of Eccentricity on the Force Response of a Hybrid Bearing,” STLE Tribol. Trans., 34, pp. 537–544)) and to the prior LBP results. Frequency effects on the dynamic-stiffness coefficients were investigated by applying dynamic-force excitation over a range of excitation frequencies. Generally, the direct real parts of the dynamic-stiffness coefficients could be modeled as quadratic functions of the excitation frequency, and accounted for by adding a mass matrix to the conventional [K][C] model to produce a frequency-independent [K][C][M] model. Measured added-mass terms in the loaded direction approached 60 kg. The static load direction in the tests was y. The direct stiffness coefficients Kyy and Kxx depend strongly on the applied unit load, more so than speed. They generally increased linearly with load, shifting to a quadratic dependence at higher unit loads. At lower unit loads, Kyy and Kxx increase monotonically with running speed. The experimental results were compared with predictions from a bulk-flow computational fluid dynamics analysis. Stiffness orthotropy was apparent in test results, significantly more than predicted, and it became more pronounced at the heavier unit loads. Measured Kyy values were consistently higher than predicted, and measured Kxx values were lower. Comparing the LOP results to prior measured LBP results for the same bearing, at higher loads, Kyy is significantly larger for the LOP configuration than LBP. Measured values for Kxx are about the same for LOP and LBP. At low unit loads, stiffness orthotropy defined as Kyy/Kxx is the same for LOP and LBP, progressively increasing with increasing unit loads. At the highest unit load, Kyy/Kxx=2.1 for LOP and 1.7 for LBP. Measured direct damping coefficients Cxx and Cyy were insensitive to changes in either load or speed, in contrast to predictions of marked Cyy sensitivity for changes in the load. Only at the highest test speed of 13,000 rpm were the direct damping coefficients adequately predicted. No frequency dependency was observed for the direct damping coefficients.


Author(s):  
Luis San Andrés ◽  
Thomas Abraham Chirathadam

Metal mesh foil bearings (MMFBs), simple to construct and inexpensive, are a promising bearing technology for oil-free microturbomachinery operating at high speed and high temperature. Prior research demonstrated the near friction-free operation of a MMFB operating to 60 krpm and showing substantial mechanical energy dissipation characteristics. This paper details further experimental work and reports MMFB rotordynamic force coefficients. The test rig comprises a turbocharger driven shaft and overhung journal onto which a MMFB is installed. A soft elastic support structure akin to a squirrel cage holds the bearing, aiding to its accurate positioning relative to the journal. Two orthogonally positioned shakers excite the test element via stingers. The test bearing comprises a cartridge holding a Copper wire mesh ring, 2.7 mm thick, and a top arcuate foil. The bearing length and inner diameter are 38 mm and 36.5 mm, respectively. Experiments were conducted with no rotation and with journal spinning at 40–50 krpm, with static loads of 22 N and 36 N acting on the bearing. Dynamic load tests spanning frequencies from 150 to 450 Hz were conducted while keeping the amplitude of bearing displacements at 20 µm, 25 µm, and 30 µm. With no journal spinning, the force coefficients represent the bearing elastic structure alone because the journal and bearing are in contact. The direct stiffnesses gradually increase with frequency while the direct damping coefficients drop quickly at low frequencies (< 200 Hz) and level off above this frequency. The damping combines both viscous and material types from the gas film and mesh structure. Journal rotation induces airborne operation with a hydrodynamic gas film separating the rotor from its bearing. Hence, cross-coupled stiffness coefficients appear although with magnitudes lower than those of the direct stiffnesses. The direct stiffnesses, 0.4 to 0.6 MN/m within 200–400 Hz, are slightly lower in magnitude as those obtained without journal rotation, suggesting the air film stiffness is quite high. Bearing direct stiffnesses are inversely proportional to the bearing motion amplitudes, whereas the direct equivalent viscous damping coefficients do not show any noticeable variation. All measurements evidence a test bearing system with material loss factor (γ) ∼ 1.0, indicating significant mechanical energy dissipation ability.


1996 ◽  
Vol 118 (4) ◽  
pp. 810-815 ◽  
Author(s):  
L. A. San Andres

Squeeze film dampers (SFD) provide load isolation and attenuate rotor vibrations in high speed turbomachinery. Operating parameters such as whirl frequency, amplitude of journal motion, and value of external pressure supply determine the SFD dynamic force response and its dissipation of mechanical energy. Measurements of pressure fields and fluid film forces in a fully submerged open-end squeeze film damper are presented for tests with rotor speeds to 5000 cpm and low supply pressures. The damper has a clearance of 381 µm (0.015 in.) and the journal describes circular centered orbits of amplitudes ranging from 30 to 50 percent of the bearing clearance. Experimental film pressures depict a vapor cavitation (close to zero absolute pressure) zone increasing in extent as the whirl frequency increases. Estimated fluid film forces from the measured pressure profiles are found to be proportional to whirl speed and lubricant viscosity. Test cross-coupled damping coefficients (Crt) are smaller than predicted values based on the short-length bearing model with a π film cavitation assumption. The direct damping coefficients (Ctt) are larger than theoretical values, especially at low frequencies where the dynamic cavitation region has not grown to half the circumferential flow extent. The experiments demonstrate the viscous character of the fluid film forces in a SFD test apparatus where fluid inertia effects are minimal (squeeze film Reynolds number less than one). On the other hand, the extent of the cavitation zone appears to be dominant on the generation of fluid film forces.


Author(s):  
Luis San Andre´s ◽  
Thomas Abraham Chirathadam

Metal mesh foil bearings (MMFB) are an inexpensive compliant gas bearing type that aims to enable high speed, high temperature operation of small turbomachinery. A MMFB with an inner diameter of 28.00 mm and length of 28.05 mm is constructed with low cost and common materials. The bearing incorporates a copper mesh ring, 20% in compactness and offering large material damping, beneath a 0.127mm thick preformed top foil. Prior experimentation (published papers) provide the bearing structure force coefficients and the break away torque for bearing lift off. Presently, the MMFB replaces a compressor in a small turbocharger driven test rig. Impact load tests aid to identify the direct and cross-coupled rotor dynamic force coefficients of the floating MMFB while operating at a speed of 50 krpm. Tests conducted with and without shaft rotation show the MMFB direct stiffness is less than its structural (static) stiffness, ∼25% lower at an excitation frequency of 200 Hz. The thin air film acting in series with the metal mesh support, and separating the rotating shaft and the bearing inner surface while airborne, reduces the bearing stiffness. The equivalent viscous damping is nearly identical with and without shaft rotation. The identified loss factor, best representing the hysteretic type damping from the metal mesh, is high at ∼0.50 in the frequency range 0–200 Hz. This magnitude reveals large mechanical energy dissipation ability from the MMFB. The measurements also show appreciable cross directional motions from the unidirectional impact loads, thus generating appreciable cross coupled force coefficients. Rotor speed coast down measurements reveal pronounced subsynchronous whirl motion amplitudes locked at distinct frequencies. The MMFB stiffness hardening nonlinearity produces the rich frequency forced response. The synchronous as well as subsynchronous motions peak while the shaft traverses its critical speeds. The measurements establish reliable operation of the test MMFB while airborne.


Author(s):  
Dara W. Childs ◽  
Clint R. Carter

Rotordynamic data are presented for a rocker-pivot tilting-pad bearing in load-on-pad (LOP) configuration for (345–3101 kPa) unit loads and speeds from 4k to 13k rpm. The bearing was direct lubricated through a leading-edge groove with 5 pads, .282 preload, 60% offset, 57.87° pad arc angle, 101.587 mm (3.9995 in) rotor diameter, 0.1575 mm (.0062 in) diametral clearance, and 60.325 mm (2.375 in) pad length. Measured results were reported for this bearing by Carter and Childs in 2008 in the load-between-pad (LBP) configuration. Results for the LOP are compared to predictions from a bulk-flow Navier-Stokes model (as utilized by San Andres in 1991) and to the prior LBP results. Frequency effects on the dynamic-stiffness coefficients were investigated by applying dynamic-force excitation over a range of excitation frequencies. Generally, the direct real parts of the dynamic-stiffness coefficients could be modeled as quadratic functions of the excitation frequency and accounted for by adding a mass matrix to the conventional [K][C] model to produce a frequency-independent [K][C][M] model. Measured added mass terms in the loaded direction approached 60 kg. The static load direction in the tests was y. The direct-stiffness coefficients Kyy and Kxx depend strongly on the applied unit load, more so than speed. They generally increased linearly with load, shifting to a quadratic dependence at higher unit loads. At lower unit loads, Kyy and Kxx increase monotonically with running speed. The experimental results were compared to predictions from a bulk-flow CFD analysis. Stiffness orthotropy was apparent in test results, significantly more than predicted, and it became more pronounced at the heavier unit loads. Measured Kyy values were consistently higher than predicted, and measured Kxx values were lower. Comparing the LOP results to prior measured LBP results for the same bearing, at higher loads, Kyy is significantly larger for the LOP configuration than LBP. Measured values for Kxx are about the same for LOP and LBP. At low unit loads, stiffness orthotropy defined as Kyy / Kxx is the same for LOP and LBP, progressively increasing with increasing unit loads. At the highest unit load, Kyy / Kxx = 2.1 for LOP and 1.7 for LBP. Measured direct damping coefficients Cxx and Cyy were insensitive to changes in either load or speed in contrast to predictions of marked Cyy sensitivity for changes in the load. Only at the highest test speed of 13 krpm were the direct damping coefficients adequately predicted. No frequency dependency was observed for the direct damping coefficients.


2002 ◽  
Vol 129 (1) ◽  
pp. 195-204
Author(s):  
Luis San Andrés ◽  
Thomas Soulas ◽  
Patrice Fayolle

This paper introduces a bulk-flow model for prediction of the static and dynamic force coefficients of angled injection Lomakin bearings. The analysis accounts for the flow interaction between the injection orifices, the supply circumferential groove, and the thin film lands. A one control-volume model in the groove is coupled to a bulk-flow model within the film lands of the bearing. Bernoulli-type relationships provide closure at the flow interfaces. Flow turbulence is accounted for with shear stress parameters and Moody’s friction factors. The flow equations are solved numerically using a robust computational method. Comparisons between predictions and experimental results for a tangential-against-rotation injection water Lomakin bearing show that novel model well predicts the leakage and direct stiffness and damping coefficients. Computed cross-coupled stiffness coefficients follow the experimental trends for increasing rotor speeds and supply pressures, but quantitative agreement remains poor. A parameter investigation shows evidence of the effects of the groove and land geometries on the Lomakin bearing flowrate and force coefficients. The orifice injection angle does not influence the bearing static performance, although it largely affects its stability characteristics through the evolution of the cross-coupled stiffnesses. The predictions confirm the promising stabilizing effect of the tangential-against-rotation injection configuration. Two design parameters, comprised of the feed orifices area and groove geometry, define the static and dynamic performance of Lomakin bearing. The analysis also shows that the film land clearance and length have a larger impact on the Lomakin bearing rotordynamic behavior than its groove depth and length.


Sign in / Sign up

Export Citation Format

Share Document