Multi-Disciplinary Design Optimization of a Horizontal Micro Kaplan Hydro Turbine

Author(s):  
Ryoichi S. Amano ◽  
Ahmad I. Abbas ◽  
Mohammad D. Qandil ◽  
Muhannad R. Al-Haddad

Abstract This study investigates a performance-based design optimization for a Kaplan hydro turbine at a maximum water head of 2.6 m (8.5 ft), micro-sized horizontal Kaplan turbine with 7.6 cm (3.0 in) diameter that is featured fixed blades to attain the optimum performance for such type and size of hydro turbines. Optimization process includes solving design problems and enhance design development by applying a multi-disciplinary design optimization (MDO) technique. Varying the geometrical parameters of the turbine, i.e., dimensions, number of blades, blade wrap angles, and different rotational speeds (500–3000 RPM) are the relevant proposed disciplines of this study. An in-house code is used for optimizing the geometrical parameters of the turbine. A numerical solution that utilizes computational fluid dynamics (CFD) for a 3D, turbulent, transient unsteady and swirl flow is developed using STAR-CCM+ software in conjunction with an experimental setup of a lab-sized closed-loop water system for validation. The performance of the turbine is predicted by evaluating the power output (in watts), mesh independency analysis is also presented for CFD results validation. Two multi-simulation matrices were solved by using the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee. First matrix includes different number of the blades (3, 4, 5, 6, and 7 blades) over six different rotational speeds (500, 1000, 1500, 2000, 2500, and 3000), while the second matrix includes 121 possible combinations of blade wrap angles starting at 60°-60° (hub-shroud) angle to 110°-110° angle with 5° increment alternated at both sides, the hub and the shroud.

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Ahmad I. Abbas ◽  
Mohammad D. Qandil ◽  
Muhannad Al-Haddad ◽  
Ryoichi S. Amano

Abstract This study investigates performance-based design optimization for a Kaplan hydro turbine at a maximum water head of 2.6 m (8.5 ft), a micro-sized horizontal Kaplan turbine with 7.6 cm (3.0 in) diameter that has fixed blades featured to attain the optimum performance for such type and size of hydro turbines. The optimization process includes solving design problems and enhance design development by applying a multi-disciplinary design optimization (MDO) technique. Varying the geometrical parameters of the turbine, i.e., dimensions, number of blades, blade wrap angles, and different rotational speeds (500–3000 rpm), are the relevant proposed disciplines of this study. Two multi-simulation matrices were solved by using the high-performance computing (HPC) cluster of the University of Wisconsin-Milwaukee. The first matrix includes different number of the blades (3, 4, 5, 6, and 7 blades) over six different rotational speeds (500, 1000, 1500, 2000, 2500, and 3000 rpm), while the second matrix includes 121 possible combinations of blade wrap angles starting at 60–60 deg (hub-shroud) angle to 110–110 deg angle with 5 deg increment alternated at both sides, the hub and the shroud.


Author(s):  
Nishant Bansal Nidhi Sengar and Amita Goe

Cancer diagnosis is one among the foremost studied problems within the medical domain. Several researchers have focused so as to enhance performance and achieve to get satisfactory results. Breast cancer[1] represents the second primary explanation for cancer deaths in women today and has become the foremost common cancer among women both within the developed and therefore the developing world in the last years. Breast cancer diagnosis is used to categorize the patients among benign (lacks ability to invade neighbouring tissue) from malignant (ability to invade neighbouring tissue) categories. In this study, the diagnosis of breast cancer from mammograms is complemented by using various classification techniques. In artificial intelligence, machine learning is a discipline which allows to the machine to evolve through a process. Machine learning[2] is widely utilized in bio-informatics and particularly in carcinoma diagnosis. This paper explores the various data processing approaches using Classification which may be applied on carcinoma data to create deep predictions. Besides this, this study predicts the simplest Model yielding high performance by evaluating dataset on various classifiers.[4-8] The results that are obtained through the research are assessed on various parameters like Accuracy, RMSE Error, Sensitivity, Specificity etc. Our work is going to be performed on the WBCD database (Wisconsin carcinoma Database) [12]obtained by the university of Wisconsin Hospital.


1991 ◽  
Vol 84 (9) ◽  
pp. 774

This research-activity project was funded jointly by the National Center for Research in Mathematical Sciences Education (NCRMSE) at the University of Wisconsin- Madison and the Research Group on Mathematics Education at the University of Utrecht, The Netherlands. The project focused on an approach to classroom instruction in relation to the NCTM's curriculum and evaluation standards. Two sets of materials for students and teachers- Data Visualization and Matrices- were developed in The Netherlands and were used by all students in all algebra classes at Whitnall High School in Greenfield, Wisconsin. Observations and interviews were conducted by an observer from the center at Utrecht.


2020 ◽  
Vol 35 (4) ◽  
pp. 147-159
Author(s):  
Marta Gil Pérez ◽  
Bas Rongen ◽  
Valentin Koslowski ◽  
Jan Knippers

The BUGA fibre pavilion built in April 2019 at the Bundesgartenschau in Heilbronn, Germany, is the most recent coreless fibre winding research pavilion developed from the collaboration between ICD/ITKE at the University of Stuttgart. The research goal is to create lightweight and high-performance lattice composite structures through robotic fabrication. The pavilion is composed of 60 carbon and glass fibre components, and is covered by a prestressed ethylene tetrafluoroethylene (ETFE) membrane. Each of the components is hollow in section and bone-like in shape. They are joined through steel connectors at the intersecting nodes where the membrane is also supported through steel poles. The components are fabricated by coreless filament winding (CFW), a technique where fibre filaments impregnated with resin are wound freely between two rotating scaffolds by a robotic arm. This novel structural system constitutes a challenge for the designer when proving and documenting the load-carrying capacity of the design. This paper outlines and elaborates on the core methods and workflows followed for the structural design, optimization and detailing of the BUGA fibre pavilion.


2008 ◽  
pp. 46-66 ◽  
Author(s):  
Robert E. Roth ◽  
Mark Harrower

These are exciting days for cartography, as emerging technologies have greatly expanded the possibilities of online, interactive maps. These developments, however, now require cartographers to think about issues that only a few years ago fell solely in the domains of human-computer interaction (HCI) and web design. Further, given how fast these changes have occurred, there are few tried-and-true guidelines for building digital maps. This paper reports on the design, development, and evaluation of the University of Wisconsin-Madison Lakeshore Nature Preserve Interactive Map (www.lakeshorepreserve.wisc.edu) and outlines many of the insights gleaned from this process. The purpose of this article is to strengthen the important bridge between cartography and usability evaluation (i.e., how we study the way in which users interact with their maps and how we measure the success of those interactions) so that the efforts of a team of developers and stakeholders can be coordinated in a way that ensures the map works equally well for all potential end users. We outline the relative merits of two broad categories of evaluation techniques, arguing that there is no single, correct evaluation technique appropriate for all evaluation scenarios, and then detail the specific strategy adopted for evaluation of the Lakeshore Nature Preserve Interactive Map. We conclude by offering four design guidelines for online, interactive maps revealed during the evaluation of the Lakeshore Nature Preserve Interactive Map: two positive strategies we recommend for consideration when designing map interfaces (inclusion of cascading interface complexity and provision of map browsing flexibility) and two pitfalls we caution to avoid (minimalist design of interface widgets and employment of a lorem ipsum map during development).


Author(s):  
Tarek ElGammal ◽  
Tomoki Sakamoto ◽  
Ryoichi S. Amano

The paper investigates the cavitation in micro-turbomachinery, using a small-sized water system. Unsteady numerical model is architected to predict cavitating flows through a 7.5 cm axial hydro-turbine working at 2.8 m water head. Based on the validated simulations, specific turbine designs (regular design and rim-drive turbines) are simulated with cavitating flow conditions including different rotation speeds (1000–5000 rpm) and outlet pressures (0, -24, -48, -96, kPa gage). Phase change interactions (liquid water and vapor) were considered by adding the physics models of Volume of Fluid (VOF) multiphase, cavitation, and Large Eddy Simulation (LES) turbulence. Records featured spatial variation in the cavitation pattern between the two designs. Rim-drive turbine stands against cavitation along the rim integration lines, but it starts the hub cavitation earlier than the regular turbine. The proposed rim-drive bests the regular geometry before cavitation, and the relative efficiency gap increased to be 16% at extreme cavitation condition.


2021 ◽  
Vol 39 (2) ◽  
pp. 365-374
Author(s):  
Ahmed Ramadhan Al-Obaidi ◽  
Jassim Alhamid

In various industrial applications, the high performance of heat exchanger demand is increasing. Subsequently, the energy resources depletion, for instance, in power plant, air-conditioning system and food processing systems. The important field for saving energy was through improving thermal performance, which can provide high performance heat exchanger. Present enhancing approaches can be classified by three changed types, which are passive technique, active technique and compound technique. Dimple, twisted tape and corrugated pipe are the passive heat improvement technique which includes more surface extensions. Hence, this research work concentrates on verifying the computational calculations of flow in the heat exchanger pipe with different surface extensions in the pipe. It is carried out for turbulent flow with a range of Reynolds number from 1000 to 15000 using CFD methods. The numerical outcomes illustrate that change twisted tape configurations have more effect on flow and heat performance. Experimental and numerical results agreement can confirm the simulation technique reliability, which adopts in this investigation. The deviation errors are observed by less than 6% compared with the normal pipe. Pressure drop increases due to the rise of twisted tape dimensions (width and thickness), leading to more mixing of fluid, secondary flow, and swirl flow inside the pipe. As the tape geometrical parameters increase, the f value also increases due to more variance in velocities flow between liquid layers, which are adjacent to tape surfaces a pipe wall, and pipe core flow layers, become higher. Correspondingly, compared to the normal pipe, twisted configurations can rise f about 5.4 to 33.5%. The better thermal evaluation factor is at a twisted tape of 1x1 mm at Re number of about 1000. The range value of the thermal evaluation factor is more than 1.67.


Author(s):  
Hans Ris

The High Voltage Electron Microscope Laboratory at the University of Wisconsin has been in operation a little over one year. I would like to give a progress report about our experience with this new technique. The achievement of good resolution with thick specimens has been mainly exploited so far. A cold stage which will allow us to look at frozen specimens and a hydration stage are now being installed in our microscope. This will soon make it possible to study undehydrated specimens, a particularly exciting application of the high voltage microscope.Some of the problems studied at the Madison facility are: Structure of kinetoplast and flagella in trypanosomes (J. Paulin, U. of Georgia); growth cones of nerve fibers (R. Hannah, U. of Georgia Medical School); spiny dendrites in cerebellum of mouse (Scott and Guillery, Anatomy, U. of Wis.); spindle of baker's yeast (Joan Peterson, Madison) spindle of Haemanthus (A. Bajer, U. of Oregon, Eugene) chromosome structure (Hans Ris, U. of Wisconsin, Madison). Dr. Paulin and Dr. Hanna are reporting their work separately at this meeting and I shall therefore not discuss it here.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
R. Espinosa ◽  
M. M. Le Beau

We have shown previously that isotope-labelled nucleotides in human metaphase chromosomes can be detected and mapped by imaging secondary ion mass spectrometry (SIMS), using the University of Chicago high resolution scanning ion microprobe (UC SIM). These early studies, conducted with BrdU- and 14C-thymidine-labelled chromosomes via detection of the Br and 28CN- (14C14N-> labelcarrying signals, provided some evidence for the condensation of the label into banding patterns along the chromatids (SIMS bands) reminiscent of the well known Q- and G-bands obtained by conventional staining methods for optical microscopy. The potential of this technique has been greatly enhanced by the recent upgrade of the UC SIM, now coupled to a high performance magnetic sector mass spectrometer in lieu of the previous RF quadrupole mass filter. The high transmission of the new spectrometer improves the SIMS analytical sensitivity of the microprobe better than a hundredfold, overcoming most of the previous imaging limitations resulting from low count statistics.


Sign in / Sign up

Export Citation Format

Share Document