Application Concepts and Experimental Validation of Constitutive Material Models for Creep-Fatigue Assessment of Components

Author(s):  
Christian Kontermann ◽  
Stefan Linn ◽  
Matthias Oechsner

Abstract The possibility to use real operational data as an input for lifetime assessment methods is a key requirement in terms of both service applications as well as within the design of components by underlying specific service relevant scenarios. To address this, so called “Constitutive Viscoplastic Material Models” have been developed which represent a more generalized alternative for assessing turbo machinery components which undergo an irregular creep-fatigue loading. Based on several experimental and theory related national research programs, performed within the German working group W10 in the last years, the current status of the model development and the performance potentials are summarized in this paper. Within the first part, the general and developed model structure of one candidate material model is introduced by discussing different aspects of the equation system together with the specific practical related aspects. Secondly, the validation of this constitutive material model is shown by comparing the model results with a set of conducted complex experiments, like ansiothermal service like experiments performed on smooth, notched and biaxially loaded cruciform test samples. As the third focus, the applicability and the potential of using such a model for assessing real components will be discussed e.g. by introducing extrapolation or cycle jump concepts which allows to majorly reduce the calculation time without decreasing the result accuracy significantly. Finally, future potentials will be introduced with the goal to use such sophisticated models to train meta-models and finally allow for a machine-learning based on-site and service related on-line component assessment.

Author(s):  
Weizhe Wang ◽  
Patrick Buhl ◽  
Andreas Klenk ◽  
Yingzheng Liu

A continuum damage mechanics (CDM) based viscoplastic constitutive model is established in this study to describe the fully coupling of creep and fatigue behavior. The most significant improvement is the introduction of a continuum damage variable into the constitutive equations, instead of considering creep damage and fatigue damage separately. The CDM-based viscoplastic constitutive material model is implemented using a user-defined subroutine (UMAT). A standard specimen is used for carrying out uniaxial creep, fatigue, and creep–fatigue interaction tests to validate the material model. In addition, to further demonstrate the capability of the material model to predict the complex material behavior, a complex strain-control loading test is performed to validate the material model. The simulated and measured results are in good agreement at different temperatures and loadings, in particular for rapid cyclic softening behavior following crack initiation and propagation.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2020 ◽  
Vol 7 (2) ◽  
pp. 026522
Author(s):  
Jinhui Wang ◽  
Xiaoguang Yuan ◽  
Peipeng Jin ◽  
Hongbin Ma ◽  
Bo Shi ◽  
...  

2012 ◽  
Vol 165 ◽  
pp. 93-97
Author(s):  
Nagur Aziz Kamal Bashah ◽  
Ahmad Zakaria ◽  
Khairul Za’im Kamarulzaman ◽  
Achmed Mobin ◽  
Mohd Safuan Mohd Abdul Lazat ◽  
...  

The use of High Strength Steels (HSS) for automotive parts improves car performance in terms of structural strength and weight reduction. However it poses major challenges to manufacturing since HSS is prone to springback. Springback causes deviation in part geometry from its intended design thus giving problem to its subsequent assembly process. In this paper, three models for predicting springback were evaluated. First model is based on the Multiple Regression (MR) technique. Second model utilized Hill Orthotropic constitutive material model and the last model employed a neural network predictive model. All the models were evaluated by using tool surface and stamped part historical data that are obtained from three selected springback prone automotive BIW parts representing three different levels of springback severity namely high, medium and small. The results on the low springback part show that the neural network model outperforms the other approaches.


2008 ◽  
Vol 141-143 ◽  
pp. 653-658 ◽  
Author(s):  
Stefan Benke ◽  
G. Laschet

The behavior of semi-solid alloys is quite different in tension, compression and shear and depends strongly on the morphology of the micro-structure. This article outlines a generalized viscoplastic material model for semi-solid alloys which reflects this complex viscoplastic behavior. From the generalized model a number of well known yield functions and viscoplastic material models for semi-solid and solid materials can be reproduces. The general model is applied to describe the behavior of the semi-solid A356 alloy below the coherency temperature during equiaxed solidification.


2015 ◽  
Vol 732 ◽  
pp. 337-340
Author(s):  
Jakub Antoš ◽  
Václav Nežerka ◽  
Pavel Tesárek

In order to develop a constitutive material model and to verify its consistency when implemented in a computational code, it is necessary to understand the material and to carry out a comprehensive experimental analysis. This can be a challenging task in the case of composite materials and structures, such as masonry, when using conventional measurements. Strain gauges and allow recording strains at a limited number of discrete points and do not provide sufficient amount of data, thus increasing the cost of the analysis. From that reason a full-field non-contact measurements, such as Digital Image Correlation (DIC), became very popular and valuable for analysis of structures subjected to mechanical loading and precise detection of the onset of strain localization. The presented study deals with tracking the strain localization using DIC in the case of masonry piers loaded by the combination of bending and compression. In such case the strain localizes into more compliant mortar joints while the complete collapse occurs when the masonry blocks fail to transfer tensile stress due to transversal expansion. The obtained data will be used for the validation of a finite element model to predict the behavior of masonry structures.


Sign in / Sign up

Export Citation Format

Share Document