A Feature Weighted Kernel Extreme Learning Machine Ensemble Method for Gas Turbine Fault Diagnosis

Author(s):  
Liping Yan ◽  
Xuezhi Dong ◽  
Hualiang Zhang ◽  
Haisheng Chen

Abstract Fault diagnosis is a very important section of gas turbine maintenance. Kernel extreme learning machine (KELM), a novel artificial intelligence algorithm, is a potentially effective diagnosis technology. The existing KELMs are all assumed that there is the same influence to the optimal separating hyperplane from all features, which reduces its generalization performance. In this study, a feature weighted kernel extreme learning machine ensemble method (FWKELM-RF) is developed for application in the field of gas turbine fault diagnosis. First, information gain ratio is introduced to assign different weights to the feature space. Furthermore, random forest is used to enhance stable performance of feature weighted KELM. The fault datasets from a gas turbine with three shafts is generated to validate the performance of the developed method, and the results demonstrate that FWKELM-RF can achieve better accuracy and stability for detecting fault in gas turbine.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Gao ◽  
Jiangang Lv

Single-Stage Extreme Learning Machine (SS-ELM) is presented to dispose of the mechanical fault diagnosis in this paper. Based on it, the traditional mapping type of extreme learning machine (ELM) has been changed and the eigenvectors extracted from signal processing methods are directly regarded as outputs of the network’s hidden layer. Then the uncertainty that training data transformed from the input space to the ELM feature space with the ELM mapping and problem of the selection of the hidden nodes are avoided effectively. The experiment results of diesel engine fault diagnosis show good performance of the SS-ELM algorithm.


2014 ◽  
Vol 128 ◽  
pp. 249-257 ◽  
Author(s):  
Pak Kin Wong ◽  
Zhixin Yang ◽  
Chi Man Vong ◽  
Jianhua Zhong

Sign in / Sign up

Export Citation Format

Share Document