Film Cooling Performance on Turbine Blade Suction Side With Various Film Cooling Hole Arrangements

Author(s):  
Zhiyu Zhou ◽  
Haiwang Li ◽  
Gang Xie ◽  
Ruquan You

Abstract Numerical simulations were carried out to study the film cooling effectiveness distributions of different hole arrangements on the suction side of a high pressure turbine blade under rotating condition. The chord length and the height of the blade are 60mm and 80mm, respectively. Totally 12 models with different hole arrangements and different injection angles were studied. Each blade model has three rows of round holes with diameter of 0.9mm on the suction surface. The first row and the third row are fixed at streamwise location of 12.4% and 34% respectively. Three injection angles, 30°, 45°, and 60°, were investigated. Simulations were conducted under three rotational speeds, 600rpm, 800rpm, 1000rpm, with blowing ratio varying from 0.5 to 2.0. The Mainstream Reynolds numbers corresponding to the rotational speeds are 40560, 54080, and 67600 respectively. The temperature of the mainstream and the coolant is set at 463K and 303K so as to control the density ratio at 1.47. Simulations were performed by using SST turbulence model and were solved by using the three-dimensional Reynolds-averaged Navier–Stokes equations. Results showed that on the rotating turbine blade suction surface, film trajectories are drawn toward the midspan. The film trajectory arrangement may be different from the hole arrangement. Inline film trajectory arrangement can achieve higher film cooling effectiveness with slightly larger injection angle. Staggered film trajectory arrangement is better for uniform film cooling effectiveness distribution in spanwise and can achieve higher film cooling effectiveness with smaller injection angle. A smaller distance between the first row and the second row can achieve better film cooling performance at the downstream. With the increase of rotational speed, the mainstream Reynolds number increases, which improves the film cooling performance with smaller blowing ratio.

Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


Author(s):  
Luzeng Zhang ◽  
Juan Yin ◽  
Kevin Liu ◽  
Moon Hee-Koo

Flow fields near the turbine nozzle endwall are highly complex due to the passage vortices and endwall cross flows. Consequently, it is challenging to provide proper cooling to the endwall surfaces. An effective way to cool the endwall is to have film cooling holes forward of the leading edge, often called “inlet-film cooling”. This paper presents the results of an experimental investigation on how the film hole diameter affects the film effectiveness on nozzle endwall and associated phantom cooling effectiveness on airfoil suction side. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Double staggered rows of film injections, which were located upstream from the nozzle leading edge, provided cooling to the contoured endwall surfaces. Film cooling effectiveness on the endwall surface and corresponding phantom cooling effectiveness on the airfoil suction side were measured separately with a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Four different film hole diameters with the same injection angle and the same pitch to diameter ratio were studied for up to six different MFR’s (mass flow ratios). Two dimensional film effectiveness distributions on the endwall surface and two dimensional phantom cooling distributions on the airfoil suction side are presented. Film/phantom cooling effectiveness distributions are pitchwise/spanwise averaged along the axial direction and also presented. The results indicate that both the endwall film effectiveness and the suction side phantom cooling effectiveness increases with the hole diameter (as decreases in blowing ratio for a given MFR) up to a specific diameter, then starts decreasing. An optimal value of the film hole diameter (blowing ratio) for the given injection angle is also suggested based on current study.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Qi-jiao He ◽  
Gang Xie

The trailing edge of the high-pressure turbine blade presents significant challenges to cooling structure design. To achieve better cooling performance at turbine blade trailing edge, a novel ribbed cutback structure is proposed for trailing edge cooling, which has rib structures on the cutback surface for heat transfer enhancement. In this study, numerical simulations have been performed on the effects of V-shaped rib angle on the film cooling characteristics and flow physics. Three V-shaped rib angles of 30°, 45° and 60° are studied. The distributions of adiabatic cooling effectiveness and heat transfer coefficient are obtained under blowing ratios with the value of 0.5, 1.0 and 1.5 respectively. Due to the relatively small rib height, the effect of V-shaped ribs on the film cooling effectiveness is not notable. The disadvantage of V-shaped ribs mainly exhibits at the downstream area of cutback surface. With the increase of V-shaped rib angle, the film cooling effectiveness becomes lower, but the values are still above 0.9. The V-shaped ribs obviously enhance the heat transfer on trailing edge cutback surface. The area-averaged heat transfer coefficient of the V-rib case is higher than that of the smooth case by 26.3–41.2%. The 45° V-rib case has higher heat transfer intensity than the other two V-shaped rib cases under all the three blowing ratios. However, the heat transfer coefficient distribution of the 60° V-rib case is more uniform. The heat transfer intensity of the 30° V-rib case is higher in the downstream region than the other two cases, but lower in the upstream region in which the difference becomes smaller with the increase of blowing ratio. The 45° V-rib case and the 60° V-rib case both reach the maximum value of area-averaged heat transfer intensity under blowing ratio is 1.0. Under higher blowing ratio, the 30° V-rib case and the 45° V-rib case outperform 2.1% and 6.7% higher value relative to the 60° V-rib case respectively due to the smaller velocity gradient in the 60° V-rib case in the downstream.


Author(s):  
Sridharan Ramesh ◽  
Chris LeBlanc ◽  
Srinath V. Ekkad ◽  
Mary Anne Alvin

Film cooling performance depends strongly on the hole exit geometry, blowing ratio, and hole location. The goal of this study is to evaluate film cooling geometries that can provide better protection over the suction surface of the airfoil beyond the throat region. This study compares the performance of standard cylindrical; fan-shaped (10° flare/laidback); tripod hole geometry (15° breakout angle); and tripod holes with shaped exits (5° flare on 15° tripod). Film cooling holes are located just upstream of the throat region on the suction side of an airfoil. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low speed linear cascade wind tunnel. A range of blowing ratios from 0.5 to 2.0 was covered for a cylindrical hole, while ensuring all other hole geometries run under similar mass flow rate conditions. Steady state IR (Infra-Red) technique was employed to measure adiabatic film cooling effectiveness. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations thus providing cooling in the important trailing edge portion of the airfoil.


Author(s):  
Huazhao Xu ◽  
Jianhua Wang ◽  
Ting Wang

To understand the unsteady shock wave and wake effects on the film cooling performance over a transonic 3-D rotating stage, a series of numerical investigations have been conducted and are presented in this two-part paper. Part 1 is focused on the development of the computational model and methodology of the system setup and model qualification; Part 2 is to investigate the unsteady effects of shock waves and wakes on film cooling performance in a transonic rotating stage. In Part 1, the film cooling experimental conditions (non-rotating) and test sections of Kopper et. al. and Hunter are selected for model qualification. The numerical computation is carried out by the commercial software Ansys/Fluent using the pressure based compressible flow governing equations. The effects of four turbulence models are carefully compared with the experimental data. The Realizable k-ε turbulence model is found to match the experimental data better than the other models and is thus used for the rest of the study, including Part 2. The results show that 1) the weak shock emanating from the neighboring stator’s trailing edge results in a temperature rise and a reduction of film cooling effectiveness on the suction side near the trailing edge, 2) cooling ejection from the trailing edge reduces the shock strength in the stator passage, 3) an increase in Mach number from 0.84 to 1.50 can reduce the total pressure losses of fluid flow near the end-walls, 4) the film cooling effectiveness increases with increasing blowing ratio and becomes more even on the stator with a higher blowing ratio, and 5) an increase in Mach number from 0.84 to 1.50 gives rise to a higher cooling effectiveness in the region from the cooling holes to 80% of the chord length of the stator on the pressure side, but becomes lower after this up to the trailing edge. However, on the stator’s suction side, higher Mach number results in a lower cooling effectiveness region around the film holes from 30% to 55% of the chord length, but cooling effectiveness increases downstream.


Author(s):  
Zhong-yi Fu ◽  
Hui-ren Zhu ◽  
Cong Liu ◽  
Zheng Li

An experimental research of film cooling performance of three single dust-pan shaped hole rows in different positions of a turbine blade was carried out in the short-duration transonic linear cascade at stationary condition, which can model realistic engine aerodynamic conditions. The effects of inlet Reynolds number (Rein = 2.5 × 105∼7.5 × 105), isentropic exit Mach number (Mais = 0.71∼0.91) and coolant blowing ratio (M = 0.8∼2.6) on film cooling effectiveness are investigated. Three single hole rows are located at 11.7%, 36.3% and 55.6% relative arc on the pressure sides of three enlarged blade models respectively. The adiabatic film cooling effectiveness are derived from the surface temperatures based on transient heat transfer measurement method. The results show that in the range of blowing ratios studied in the present paper, for location 3 the cooling effectiveness decreases a lot with blowing ratio increasing due to the lift-off of coolant at high blowing ratios, while for location 1 and 2, the film cooling effectiveness increases with blowing ratio increasing, because the strong favorable pressure gradient and high concave curvature near the leading edge lead to a good attachment of coolant on the surface. At M≤1.0 conditions, the film cooling effectiveness of location 1 and 2 is lower than that of location 3, which reflects that strong favorable pressure gradient and high concave curvature weaken film cooling performance at low blowing ratio conditions, while the effect is opposite when M is greater than 1.0. For location 1, the highest general cooling performance is obtained at Rein = 2.5 × 105 condition, and for location 2, the change of Rein has different effects on cooling effectiveness in different regions. In the range of Mais studied in this paper, the change of Mais has little effect on film cooling effectiveness.


Author(s):  
Zhi-yu Zhou ◽  
Hai-wang Li ◽  
Hai-chao Wang ◽  
Guo-qin Zhao ◽  
Feng Han ◽  
...  

This paper reports the experimental and numerical studies on the effects of rotating speed and blowing ratio on the film cooling performance of the hole near the leading edge on the suction side of the turbine blade. The chord and height of the blade are 60mm and 80mm respectively. The film hole with diameter of 0.8mm is located in the mid span on the suction side at axial location of 8%. The injection angle of the hole is 45° to the suction surface of the blade and is nearly perpendicular to the axial direction. Both experimental and numerical studies were carried out with rotating speeds of 300rpm, 450rpm and 600rpm, and with blowing ratios of 0.5, 1.0, 1.5 and 2.0. CO2 was used as the coolant. Experimental data was measured by applying the Thermochromic Liquid Crystal (TLC) technique and the Stroboscopic Imaging Technique. Mainstream and coolant were heated to 308K and 318K respectively. Numerical studies were performed to assist the analysis of the experimental results. The SST turbulence model was applied in the simulations. Results show that the film cooling performance of the hole near the leading edge is different from that of the hole further downstream on the suction side. This is because the direction of the jet is nearly perpendicular to the axial direction, which increases the effect of the Coriolis force. Besides, the mainstream from leading edge also has effects on film cooling performance. With the increase of the blowing ratio, the film coverage area and spatially averaged film cooling effectiveness increase first and then decrease. The maximum film coverage and averaged film cooling effectiveness appear at blowing ratio of 1.0 and rotating speed of 300rpm. Moreover, the upward deflection angle of the film trajectory increases slightly with the increase of the blowing ratio. Higher rotating speed intensifies the deflection of the film trajectory. Therefore, the film coverage and the averaged film cooling effectiveness decrease rapidly.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined on a high-pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios (BR=1.2, 1.7, and 2.2 on the pressure side and BR=1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR=1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu=4.2% and 10.5%) are considered. Conduction-free pressure sensitive paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases—N2 for low density, CO2 for medium density, and a mixture of SF6 and argon for high density are selected to study the effect of coolant density. The test blade features two rows of cylindrical film-cooling holes on the suction side (45 deg compound), 4 rows on the pressure side (45 deg compound) and 3 around the leading edge (30 deg radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. The Reynolds number of the mainstream flow is 7.5×105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film-effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx<0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.


Author(s):  
Alireza Bakhshinejad Bahambari ◽  
Mohammad Hassan Kayhani ◽  
Mahmood Norouzi

In the present study, three types of w-wave trenches with different amplitude configurations are compared with transverse trench (TT), and the use of variable radius fillet (VRF) on downstream lips at different blowing ratio is numerically investigated to measure heat transfer coefficient, and cooling effectiveness. The numerical results are obtained by three-dimensional Reynolds average Navier–Stokes equations (RANS) while employing shear stress transport turbulence models, which are validated by comparing with experimental data. The trench width is kept constant in all cases, yet the three different amplitudes and variable fillet radiuses offered a variety of designs in trench film cooling. The results showed that w-wave trenches impressively improved film cooling effectiveness over the transverse trench, and utilizing fillets at downstream lips of the trench caused significant enhancement on both lateral averaged and centerline cooling performance. Due to the w-wave trench configuration, anti-counter-rotating vortices responsible for pushing coolant film toward the near-wall were formed throughout of downstream wall of the trench, and the cooling flow thus had a more uniform structure. The heat transfer coefficient distributions of filleted w-wave trenches are observed to be more uniform than simple w-wave and transverse trench under all blowing ratio conditions. Moreover, enlargement of the fillet radius in Cases 2 and 3 yielded to the growth of centerline coolant flow, which in turn resulted in the improvement of film cooling effectiveness at all blowing ratios.


Author(s):  
Diganta P. Narzary ◽  
Kuo-Chun Liu ◽  
Akhilesh P. Rallabandi ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined on a high pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio and freestream turbulence intensity. Three average coolant blowing ratios (BR = 1.2, 1.7, and 2.2 on the pressure side and BR = 1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR = 1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu = 4.2% and 10.5%) are considered. Conduction-free Pressure Sensitive Paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases— N2 for low density, CO2 for medium density, and a mixture of SF6 and Argon for high density are selected to study the effect of coolant density. The test blade features 2 rows of cylindrical film-cooling holes on the suction side (45° compound), 4 rows on the pressure side (45° compound) and 3 around the leading edge (30° radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. Reynolds number of the mainstream flow is 7.5E105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx&lt;0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.


Sign in / Sign up

Export Citation Format

Share Document