Rotating Film Cooling Performance of the Hole Near the Leading Edge on the Suction Side of the Turbine Blade

Author(s):  
Zhi-yu Zhou ◽  
Hai-wang Li ◽  
Hai-chao Wang ◽  
Guo-qin Zhao ◽  
Feng Han ◽  
...  

This paper reports the experimental and numerical studies on the effects of rotating speed and blowing ratio on the film cooling performance of the hole near the leading edge on the suction side of the turbine blade. The chord and height of the blade are 60mm and 80mm respectively. The film hole with diameter of 0.8mm is located in the mid span on the suction side at axial location of 8%. The injection angle of the hole is 45° to the suction surface of the blade and is nearly perpendicular to the axial direction. Both experimental and numerical studies were carried out with rotating speeds of 300rpm, 450rpm and 600rpm, and with blowing ratios of 0.5, 1.0, 1.5 and 2.0. CO2 was used as the coolant. Experimental data was measured by applying the Thermochromic Liquid Crystal (TLC) technique and the Stroboscopic Imaging Technique. Mainstream and coolant were heated to 308K and 318K respectively. Numerical studies were performed to assist the analysis of the experimental results. The SST turbulence model was applied in the simulations. Results show that the film cooling performance of the hole near the leading edge is different from that of the hole further downstream on the suction side. This is because the direction of the jet is nearly perpendicular to the axial direction, which increases the effect of the Coriolis force. Besides, the mainstream from leading edge also has effects on film cooling performance. With the increase of the blowing ratio, the film coverage area and spatially averaged film cooling effectiveness increase first and then decrease. The maximum film coverage and averaged film cooling effectiveness appear at blowing ratio of 1.0 and rotating speed of 300rpm. Moreover, the upward deflection angle of the film trajectory increases slightly with the increase of the blowing ratio. Higher rotating speed intensifies the deflection of the film trajectory. Therefore, the film coverage and the averaged film cooling effectiveness decrease rapidly.

Author(s):  
Yang Zhang ◽  
Xin Yuan

The paper is focused on the effect of leading edge airfoil geometry on endwall film cooling. Fillets placed at the junctions of the leading edge and the endwall are used in investigation. Three types of fillet profiles are tested, and the results are compared with baseline geometry without fillet. The design of the fillet is based on the suggestion by previous literature data indicating that sharp is effective in controlling the secondary flow. Three types of sharp slope fillet with the length to height ratio of 2.8, 1.2 and 0.5 are made using stereo lithography (SLA) and assessed in the experiment. Distributed with the approximately inviscid flow direction, four rows of compound angle laidback fan-shaped holes are arranged on the endwall to form full covered coolant film. The four rows of fanshaped holes are inclined 30 deg to the endwall surface and held an angle of 0, 30, 45 and 60 deg to axial direction respectively. The fanshaped holes have a lateral diffusion angle of 10 deg from the hole-centerline and a forward expansion angle of 10 deg to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5*105, and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet) while the blowing ratio of the coolant through the discrete holes varies from 0.4 to 1.2. The film-cooling effectiveness distributions are obtained using the PSP (pressure sensitive paint) technique, by which the effect of different fillet geometry on passage induced flow and coolant is shown. The present paper compares the film cooling effectiveness distributions in a baseline blade cascade with three similar blades with different leading edge by adding fillets. The results show that with blowing ratio increasing, the film cooling effectiveness increases on the endwall. For specific blowing ratio, the effects of leading edge geometries could be illustrated as follows. The baseline geometry provides the best film cooling performance near leading edge pressure side. As for the leading edge suction side, the best leading edge geometry depends on the blowing ratio. The longfillet is the more effective in controlling horseshoe vortex at low blowing ratio, but for the high blowing ratio shortfillet and mediumfillet are better.


Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


Author(s):  
Luzeng Zhang ◽  
Juan Yin ◽  
Kevin Liu ◽  
Moon Hee-Koo

Flow fields near the turbine nozzle endwall are highly complex due to the passage vortices and endwall cross flows. Consequently, it is challenging to provide proper cooling to the endwall surfaces. An effective way to cool the endwall is to have film cooling holes forward of the leading edge, often called “inlet-film cooling”. This paper presents the results of an experimental investigation on how the film hole diameter affects the film effectiveness on nozzle endwall and associated phantom cooling effectiveness on airfoil suction side. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Double staggered rows of film injections, which were located upstream from the nozzle leading edge, provided cooling to the contoured endwall surfaces. Film cooling effectiveness on the endwall surface and corresponding phantom cooling effectiveness on the airfoil suction side were measured separately with a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Four different film hole diameters with the same injection angle and the same pitch to diameter ratio were studied for up to six different MFR’s (mass flow ratios). Two dimensional film effectiveness distributions on the endwall surface and two dimensional phantom cooling distributions on the airfoil suction side are presented. Film/phantom cooling effectiveness distributions are pitchwise/spanwise averaged along the axial direction and also presented. The results indicate that both the endwall film effectiveness and the suction side phantom cooling effectiveness increases with the hole diameter (as decreases in blowing ratio for a given MFR) up to a specific diameter, then starts decreasing. An optimal value of the film hole diameter (blowing ratio) for the given injection angle is also suggested based on current study.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


Author(s):  
Yi Lu ◽  
Yinyi Hong ◽  
Zhirong Lin ◽  
Xin Yuan

Detailed film cooling effectiveness distributions were experimentally obtained on a turbine vane platform within a linear cascade. Testing was done in a large scale five-vane cascade with low freestream Renolds number condition 634,000 based on the axial chord length and the exit velocity. The detailed film-cooling effectiveness distributions on the platform were obtained using pressure sensitive paint technique. Two film-cooling hole configurations, cylindrical and fan-shaped, were used to cool the vane surface with two rows on pressure side, two rows on suction side and three rows on leading edge. For cylindrical holes, the blowing ratio of the coolant through the discrete cooling holes on pressure side and suction side ranged from 0.3 to 1.5 (based on the inlet mainstream velocity) while the blowing ratio ranging from 0.15 to 1.5 on leading edge; for fan-shaped holes, the four blowing ratios were 0.5, 1.0, 1.5 and 2.0. Results showed that average film-cooling effectiveness decreased with increasing blowing rate for the cylindrical holes, while the fan-shaped passage showed increased film-cooling effectiveness with increasing blowing ratio, indicating the fan-shaped cooling holes helped to improve film-cooling effectiveness by reducing overall jet liftoff. Fan-shaped holes improved average film-cooling effectiveness by 93.2%, 287.6% and 489.6% on pressure side, −4.1%, 27.9% and 78.2% on suction side over cylindrical holes at the blowing ratio of 0.5, 1.0 and 1.5 respectively. Numerical results were used to analyze the details of the flow and heat transfer on the cooling area with two turbulence models. Results demonstrated that tendency of the film cooling effectiveness distribution of numerical calculation and experimental measurement was generally consistent at different blowing ratio.


Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Numerical simulations were performed to predict the film cooling effectiveness and the associated heat transfer coefficient on the leading edge of a rotating blade in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. Simulations were performed for both the design and off-design conditions to investigate the effects of blade rotation on the leading edge film cooling effectiveness and heat transfer coefficient distributions. It was found that the tilt stagnation line on the leading edge of rotor moves from the pressure side to the suction side, and the instantaneous coolant streamlines shift from the suction side to the pressure side with increasing rotating speed. This trend was supported by the experimental results. The result also showed that the heat transfer coefficient increases, but film cooling effectiveness decreases with increasing rotating speed. In addition, the unsteady characteristics of the film cooling and heat transfer at different time phases, as well as different rotating speeds, were also reported.


Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

In this paper, blade-tip cooling is investigated with coolant injection from the shroud alone and a combination of shroud coolant injection and tip cooling. The blade rotates at a nominal speed of 1200 RPM, and consists of a cut back squealer tip with a tip clearance of 1.7% of the blade span. The blade consists of tip holes and pressure side shaped holes, while the shroud has an array of angled holes and a circumferential slot upstream of the rotor section. Different combinations of the three cooling configurations are utilized to study the effectiveness of shroud cooling as a complementary method of cooling the blade tip. The measurements are done using liquid crystal thermography. Blowing ratios of 0.5, 1.0, 2.0, 3.0 and 4.0 are studied for shroud slot cooling and blowing ratios of 1.0, 2.0, 3.0, 4.0 and 5.0 are studied for shroud hole cooling. For cases with coolant injection from the tip, the blowing ratios used are 1.0, 2.0, 3.0 and 4.0. The results show an increase in film cooling effectiveness with increasing blowing ratio for shroud hole cooling. The increased effectiveness from shroud hole cooling is concentrated mainly in the tip-region below the shroud holes and towards the blade suction side and the suction side squealer rim. Slot cooling injection results in increased effectiveness on the blade tip near the blade leading edge up to a maximum blowing ratio, after which the cooling effectiveness decreases with increasing blowing ratio. The combination of the different cooling methods results in better overall cooling coverage of the blade tip with the shroud hole and blade tip cooling combination being the most effective. The level of coolant protection is strongly dependent on the blowing ratio and combination of blowing ratios.


Author(s):  
Huazhao Xu ◽  
Jianhua Wang ◽  
Ting Wang

To understand the unsteady shock wave and wake effects on the film cooling performance over a transonic 3-D rotating stage, a series of numerical investigations have been conducted and are presented in this two-part paper. Part 1 is focused on the development of the computational model and methodology of the system setup and model qualification; Part 2 is to investigate the unsteady effects of shock waves and wakes on film cooling performance in a transonic rotating stage. In Part 1, the film cooling experimental conditions (non-rotating) and test sections of Kopper et. al. and Hunter are selected for model qualification. The numerical computation is carried out by the commercial software Ansys/Fluent using the pressure based compressible flow governing equations. The effects of four turbulence models are carefully compared with the experimental data. The Realizable k-ε turbulence model is found to match the experimental data better than the other models and is thus used for the rest of the study, including Part 2. The results show that 1) the weak shock emanating from the neighboring stator’s trailing edge results in a temperature rise and a reduction of film cooling effectiveness on the suction side near the trailing edge, 2) cooling ejection from the trailing edge reduces the shock strength in the stator passage, 3) an increase in Mach number from 0.84 to 1.50 can reduce the total pressure losses of fluid flow near the end-walls, 4) the film cooling effectiveness increases with increasing blowing ratio and becomes more even on the stator with a higher blowing ratio, and 5) an increase in Mach number from 0.84 to 1.50 gives rise to a higher cooling effectiveness in the region from the cooling holes to 80% of the chord length of the stator on the pressure side, but becomes lower after this up to the trailing edge. However, on the stator’s suction side, higher Mach number results in a lower cooling effectiveness region around the film holes from 30% to 55% of the chord length, but cooling effectiveness increases downstream.


Author(s):  
Zhiyu Zhou ◽  
Haiwang Li ◽  
Gang Xie ◽  
Ruquan You

Abstract Numerical simulations were carried out to study the film cooling effectiveness distributions of different hole arrangements on the suction side of a high pressure turbine blade under rotating condition. The chord length and the height of the blade are 60mm and 80mm, respectively. Totally 12 models with different hole arrangements and different injection angles were studied. Each blade model has three rows of round holes with diameter of 0.9mm on the suction surface. The first row and the third row are fixed at streamwise location of 12.4% and 34% respectively. Three injection angles, 30°, 45°, and 60°, were investigated. Simulations were conducted under three rotational speeds, 600rpm, 800rpm, 1000rpm, with blowing ratio varying from 0.5 to 2.0. The Mainstream Reynolds numbers corresponding to the rotational speeds are 40560, 54080, and 67600 respectively. The temperature of the mainstream and the coolant is set at 463K and 303K so as to control the density ratio at 1.47. Simulations were performed by using SST turbulence model and were solved by using the three-dimensional Reynolds-averaged Navier–Stokes equations. Results showed that on the rotating turbine blade suction surface, film trajectories are drawn toward the midspan. The film trajectory arrangement may be different from the hole arrangement. Inline film trajectory arrangement can achieve higher film cooling effectiveness with slightly larger injection angle. Staggered film trajectory arrangement is better for uniform film cooling effectiveness distribution in spanwise and can achieve higher film cooling effectiveness with smaller injection angle. A smaller distance between the first row and the second row can achieve better film cooling performance at the downstream. With the increase of rotational speed, the mainstream Reynolds number increases, which improves the film cooling performance with smaller blowing ratio.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Onieluan Tamunobere ◽  
Sumanta Acharya

In this paper, blade tip cooling is investigated with coolant injection from the shroud alone and a combination of shroud coolant injection and tip cooling. With a nominal rotation speed of 1200 rpm, each blade consists of a cut back squealer tip with a tip clearance of 1.7% of the blade span. The blades also consist of tip holes and pressure side (PS) shaped holes, while the shroud has an array of angled holes and a circumferential slot upstream of the rotor section. Different combinations of the three cooling configurations (tip and PS holes, shroud angled holes, and shroud circumferential slot) are utilized to study the effectiveness of coolant injected from the shroud as a complementary method of cooling the blade tip. The measurements are done using liquid crystal thermography. Blowing ratios of 0.5, 1.0, 2.0, 3.0, and 4.0 are studied for shroud slot cooling, and blowing ratios of 1.0, 2.0, 3.0, 4.0, and 5.0 are studied for shroud hole cooling. For cases with coolant injection from the blade tip, the blowing ratios used are 1.0, 2.0, 3.0, and 4.0. The results show an increase in film cooling effectiveness with increasing blowing ratio for shroud hole coolant injection. The increased effectiveness from shroud hole coolant is concentrated mainly in the tip region below the shroud holes and toward the blade suction side and the suction side squealer rim. Slot coolant injection results in increased effectiveness on the blade tip near the blade leading edge up to a maximum blowing ratio, after which the cooling effectiveness decreases with increasing blowing ratio. The combination of the different cooling methods results in better overall cooling coverage of the blade tip with the shroud hole and blade tip coolant combination being the most effective. The level of coolant protection is strongly dependent on the blowing ratio and combination of blowing ratios.


Sign in / Sign up

Export Citation Format

Share Document