On the Development of a Synchronized Harmonic Balance Method for Multiple Frequencies and its Application to LPT Flows

Author(s):  
Javier Crespo ◽  
Jesús Contreras

Abstract The aim of this paper is to describe the development and application of a multi-frequency harmonic balance solver for GPUs, particularly suitable for the simulation of periodic unsteadiness in nonlinear turbomachinery flows comprised of a few dominant frequencies, with an unsteady multistage coupling that bolsters the flow continuity across the rotor/stator interface. The formulation is addressed with the time-domain reinterpretation, where several non-equidistant time instants conveniently selected are solved simultaneously. The set of required frequencies in each row is driven into the governing equations with the help of almost-periodic Fourier transforms for time derivatives and time shifted boundary conditions. The spatial repetitiveness inside each row can be exploited to perform single-passage simulations and the relative circumferential positioning of the rotors or stators and the different blade or vane counts is tackled by means of adding fictitious frequencies referring to non-adjacent rows therefore taking into account clocking and indexing effects. Existing multistage row coupling techniques of harmonic methods rely on the use of non-reflecting boundary conditions, based on linearizations, or time interpolation, which may lead to Runge phenomenon with the resulting numerical instabilities and non-preserving flux exchange. Different sets of time instants might be selected in each row but the interpolation in space and time across their interfaces gives rise to robustness issues due to this phenomenon. The so-called synchronized approach, developed in this work, consist of having the same time instances among the whole ensemble of rows, ensuring that flux transfer at sliding planes is applied more robustly. The combination of a set of shared non-equidistant time instances plus the use of unequal frequencies (real and fictitious) may spoil the Fourier transforms conditioning but this can be dramatically improved with the help of oversampling and instants selection optimization. The resulting multistage coupling naturally addresses typical numerical issues such as flow that might reverse locally across the row interfaces by means of not using boundary conditions but a local flux conservation scheme in the sliding planes. Some examples will be given to illustrate the ability of this new approach to preserve accuracy and robustness while resolving them. A brief analysis of results for a fan stage and a LPT multi-row case is presented to demonstrate the correctness of the method, assessing the impact in the modeling accuracy of the present approach compared with a time-domain conventional analysis. Regarding the computational performance, the speedup compared to a full annulus time-domain unsteady simulation is a factor of order 30 combining the use of single-passage rows and time spectral accuracy.

Author(s):  
M. Sergio Campobasso ◽  
Mohammad H. Baba-Ahmadi

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the harmonic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use of such an explicit approach in this context is discussed and resolved. The harmonic balance solver with low-speed preconditioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing the flow field past two sections of a wind turbine blade in yawed wind with both the time- and frequency-domain solvers. Results highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain counterpart, and with an accuracy comparable to that of the time-domain solver.


Author(s):  
Laura Junge ◽  
Graham Ashcroft ◽  
Peter Jeschke ◽  
Christian Frey

Due to the relative motion between adjacent blade rows the aerodynamic flow fields within turbomachinery are normally dominated by deterministic, periodic phenomena. In the numerical simulation of such unsteady flows (nonlinear) frequency-domain methods are therefore attractive as they are capable of fully exploiting the given spatial and temporal periodicity, as well as capturing or modelling flow nonlinearity. Central to the efficiency and accuracy of such frequency-domain methods is the selection of the frequencies and the circumferential modes to be resolved in simulations. Whilst trivial in the context of the simulation of a single compressor- or turbine-stage, the choice of solution modes becomes substantially more involved in multi-stage configurations. In this work the importance of mode scattering, in the context of the unsteady aerodynamic field, is investigated and quantified. It is shown that scattered modes can substantially impact the unsteady flow field and are essential for the accurate modelling of wake propagation within multistage configurations. Furthermore, an iterative approach is outlined, based on the spectral analysis of the circumferential modes at the interfaces between blade rows, to identify the dominant solution modes that should be resolved in the adjacent blade row. To demonstrate the importance of mode scattering and validate the approach for their identification the unsteady blade row interaction within a 4.5 stage axial compressor is computed using both the harmonic balance method and, based on a full annulus midspan simulation, a time-domain method. Through the inclusion of scattered modes it is shown that the solution quality of the harmonic balance results is comparable to that of the nonlinear time-domain simulation.


Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
M. Sergio Campobasso ◽  
Mohammad H. Baba-Ahmadi

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the harmonic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use of such an explicit approach in this context is discussed and resolved. The harmonic balance solver with low-speed preconditioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing the flow field past two sections of a wind turbine blade in yawed wind with both the time-and frequency-domain solvers. Results highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain counterpart, and with an accuracy comparable to that of the time-domain solver.


AIAA Journal ◽  
2014 ◽  
Vol 52 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Frédéric Sicot ◽  
Adrien Gomar ◽  
Guillaume Dufour ◽  
Alain Dugeai

1985 ◽  
Vol 52 (4) ◽  
pp. 958-964 ◽  
Author(s):  
C. Pierre ◽  
A. A. Ferri ◽  
E. H. Dowell

A multi-harmonic, frequency domain analysis of dry friction damped systems is presented which uses an incremental harmonic balance method. When compared with time domain solution methods, it is found that the incremental harmonic balance method can yield very accurate results with some advantages over the time domain methods. Both one and two degree-of-freedom systems are studied.


2006 ◽  
Vol 74 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Q. L. Ma ◽  
A. Kahraman ◽  
J. Perret-Liaudet ◽  
E. Rigaud

In this study, the dynamic behavior of an elastic sphere-plane contact interface is studied analytically and experimentally. The analytical model includes both a continuous nonlinearity associated with the Hertzian contact and a clearance-type nonlinearity due to contact loss. The dimensionless governing equation is solved analytically by using multi-term harmonic balance method in conjunction with discrete Fourier transforms. The accuracy of the dynamic model and solution methods is demonstrated through comparisons with experimental data and numerical solutions for both harmonic amplitudes of the acceleration response and the phase difference between the response and the force excitation. A single-term harmonic balance approximation is used to derive a criterion for contact loss to occur. The influence of harmonic external excitation f(τ) and damping ratio ζ on the steady state response is also demonstrated.


Author(s):  
Cheon-Jae Bahk ◽  
Robert G. Parker

Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. At resonance, the resulting vibration causes tooth separation leading to nonlinear effects such as jump phenomena and subharmonic resonance. This work examines the nonlinear dynamics of planetary gears by numerical and analytical methods over the meaningful mesh frequency ranges. Concise, closed-form approximations for the dynamic response are obtained by perturbation analysis. The analytical solutions give insight into the nonlinear dynamics and the impact of system parameters on dynamic response. Correlation between the amplitude of response and external torque demonstrates that tooth separation occurs even under large torque. The harmonic balance method with arclength continuation confirms the perturbation solutions. The accuracy of the analytical and harmonic balance solutions is evaluated by parallel finite element and numerical integration simulations.


Author(s):  
Ko-Choong Woo ◽  
Albert A. Rodger ◽  
Richard D. Neilson ◽  
Marian Wiercigroch

Abstract The paper describes current research into mathematical modelling of a novel vibro-impact ground moling system. Experimental and theoretical studies suggest periodic responses are required to achieve the optimal penetrating conditions for the ground moling process, as this results in reduced soil penetration resistance. Therefore, there is a practical need for a robust and efficient methodology to calculate periodic responses for a wide range of operational parameters. Due to the structural complexity of a real vibro-impact moling system, the dynamic response of an idealised impact oscillator has been investigated in the first instance. This paper presents a detailed study of periodic responses of the impact oscillator under harmonic forcing using alternating frequency-time harmonic balance method. Recommendations of how to effectively adapt the alternating frequency-time harmonic balance method for a stiff impacting system are given. The periodic motion is represented algebraically by a truncated Fourier series and the systematic methodology employed allows for convergence. The idea central to this procedure is that the linear oscillator is explicitly solvable analytically, and this allows for the initial set of Fourier coefficients. The clearance value is then adjusted so that contact with the secondary stiffness is slight and the nonlinearity is weak. The solution to this subsequent system is obtainable as the initial guess is close to the required solution.


Sign in / Sign up

Export Citation Format

Share Document