An Investigation of Steady-State Dynamic Response of a Sphere-Plane Contact Interface With Contact Loss

2006 ◽  
Vol 74 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Q. L. Ma ◽  
A. Kahraman ◽  
J. Perret-Liaudet ◽  
E. Rigaud

In this study, the dynamic behavior of an elastic sphere-plane contact interface is studied analytically and experimentally. The analytical model includes both a continuous nonlinearity associated with the Hertzian contact and a clearance-type nonlinearity due to contact loss. The dimensionless governing equation is solved analytically by using multi-term harmonic balance method in conjunction with discrete Fourier transforms. The accuracy of the dynamic model and solution methods is demonstrated through comparisons with experimental data and numerical solutions for both harmonic amplitudes of the acceleration response and the phase difference between the response and the force excitation. A single-term harmonic balance approximation is used to derive a criterion for contact loss to occur. The influence of harmonic external excitation f(τ) and damping ratio ζ on the steady state response is also demonstrated.

Author(s):  
Javier Crespo ◽  
Jesús Contreras

Abstract The aim of this paper is to describe the development and application of a multi-frequency harmonic balance solver for GPUs, particularly suitable for the simulation of periodic unsteadiness in nonlinear turbomachinery flows comprised of a few dominant frequencies, with an unsteady multistage coupling that bolsters the flow continuity across the rotor/stator interface. The formulation is addressed with the time-domain reinterpretation, where several non-equidistant time instants conveniently selected are solved simultaneously. The set of required frequencies in each row is driven into the governing equations with the help of almost-periodic Fourier transforms for time derivatives and time shifted boundary conditions. The spatial repetitiveness inside each row can be exploited to perform single-passage simulations and the relative circumferential positioning of the rotors or stators and the different blade or vane counts is tackled by means of adding fictitious frequencies referring to non-adjacent rows therefore taking into account clocking and indexing effects. Existing multistage row coupling techniques of harmonic methods rely on the use of non-reflecting boundary conditions, based on linearizations, or time interpolation, which may lead to Runge phenomenon with the resulting numerical instabilities and non-preserving flux exchange. Different sets of time instants might be selected in each row but the interpolation in space and time across their interfaces gives rise to robustness issues due to this phenomenon. The so-called synchronized approach, developed in this work, consist of having the same time instances among the whole ensemble of rows, ensuring that flux transfer at sliding planes is applied more robustly. The combination of a set of shared non-equidistant time instances plus the use of unequal frequencies (real and fictitious) may spoil the Fourier transforms conditioning but this can be dramatically improved with the help of oversampling and instants selection optimization. The resulting multistage coupling naturally addresses typical numerical issues such as flow that might reverse locally across the row interfaces by means of not using boundary conditions but a local flux conservation scheme in the sliding planes. Some examples will be given to illustrate the ability of this new approach to preserve accuracy and robustness while resolving them. A brief analysis of results for a fan stage and a LPT multi-row case is presented to demonstrate the correctness of the method, assessing the impact in the modeling accuracy of the present approach compared with a time-domain conventional analysis. Regarding the computational performance, the speedup compared to a full annulus time-domain unsteady simulation is a factor of order 30 combining the use of single-passage rows and time spectral accuracy.


2013 ◽  
Vol 774-776 ◽  
pp. 103-106
Author(s):  
Xin Xue ◽  
Lian Zhong Li ◽  
Dan Sun

Duffing-van der Pol oscillator with fractional derivative was constructed in this paper. The solution procedure was proposed with the residue harmonic balance method. The effect of different fractional orders on resonance responses of the system in steady state were analyzed for an example without parameters. The approximate solutions were contrasted with numerical solutions. The results show that the residue harmonic balance method to Duffing-van der Pol differential equation with fractional derivative is very valid.


Author(s):  
Jonathan M. Weiss ◽  
Venkataramanan Subramanian ◽  
Kenneth C. Hall

A nonlinear harmonic balance method for the simulation of turbomachinery flows is presented. The method is based on representing an unsteady, time periodic flow by a Fourier series in time and then solving a set of mathematically steady-state equations to obtain the Fourier coefficients. The steady-state solutions are stored at discrete time levels distributed throughout one period of unsteadiness and are coupled via the physical time derivative and at periodic boundaries. Implicit coupling between time levels is achieved in a computationally efficient manner through approximate factorization of the linear system that results from the discretized equations. Unsteady, rotor-stator interactions are performed to validate the implementation. Results based on the harmonic balance method are compared against those obtained using a full unsteady, time-accurate calculation using moving meshes. The implicitly coupled nonlinear harmonic balance method is shown to produce a solution of reasonable accuracy compared to the full unsteady approach but with significantly less computational cost.


Author(s):  
Ben Noble ◽  
Julian J. Wu

Abstract Steady state solutions for nonlinear dynamic problems are interesting because (1) the long time behaviors of many problems are of practical concern, and, (2) these behaviors are often difficult to predict. This paper first presents a brief description of a generalized harmonic balance method (GHB) for steady state solutions to nonlinear problems via a nonlinear oscillator problem with a quadratic nonlinearity. Using this approach, steady state solutions are obtained for problems with several parameters: damping, nonlinearity and frequency (subharmonic, superharmonic and primary resonance). These results, plotted in time evolution curves and phase diagrams are compared with those obtained by numerically integrating the original differential equations. The effect of initial conditions on long time solutions is discussed. This investigation indicates that (1) the GHB steady state is an excellent approximate solution to that of the original equation if such a solution is numerically stable, and (2) the GHB steady state simply indicates a region of instability when the numerical solution to the original equation, using a point in that region as the initial point, is unstable.


2021 ◽  
Author(s):  
Xiaodong He ◽  
Zhiwei Zheng ◽  
Xiuchang Huang ◽  
Sen Wang ◽  
Xinsheng Wei ◽  
...  

Abstract A damping strategy using a friction ring damper for an industrial flywheel was numerically and experimentally investigated. The friction ring damper, located on the arms of the flywheel, was experimentally found to effectively reduce the vibration amplitude of the flywheel. The vibration energy is dissipated when relative motions occur at the friction contact interfaces. Nonlinear dynamic analysis based on a lumped-parameter model of a flywheel equipped with a friction ring damper was conducted. A dimensionless parameter, κ, defined as the ratio of the critical friction force to the amplitude of harmonic force, was used to evaluate the damping performance. For several values of κ, steady-state responses under harmonic excitation and nonlinear modes were obtained using the harmonic balance method (HBM) combined with the alternating frequency–time domain method (AFT). The forced response analysis proved the existence of an optimal value of κ, which can minimize the vibration amplitude of the flywheel. The nonlinear modal analysis showed that all the damping ratio–frequency curves are completely coincident even for different κ, and the frequency corresponding to the maximum damping ratio is equal to the frequency at the intersection of the forced response curves under the fully slip and the fully stick states of the friction contact interface. By analyzing the behaviors of the friction contact interface, it is shown that the friction contact interface provides damping in the combined stick–slip state. The forced response under random excitation was calculated using the Runge–Kutta method and the friction interface behaviors were analyzed. Finally, spectral testing was conducted to verify the numerical results.


Author(s):  
Asogwa Jude C. ◽  
Obe Emeka S. ◽  
Nnadi Damian B. ◽  
Oti Stephen E.

A concise steady-state analysis of a single-phase line-start permanent magnet (SPLSPM) machine is conducted from a developed d-q model using the d-q harmonic balance technique. The d-q model was developed in rotor reference frame from a phase variable model of the machine. SPLSPM whose performance indices were characterized by high torque ripples has detailed analysis docile mostly in computer simulations quite unlike the three-phase types. The main cause is not far-fetched, it was due to nonexistence of precise mathematical model in d-q rotor frame of the motor due to the unbalanced field winding, the rotor saliency and the presence of the capacitor in the auxiliary windings. Even after model has been developed, the simple traditional procedure of setting all time varying component to zero for steady-state analysis fails because the rotor position dependence on the inductance expressions could not be eliminated. The d-q harmonic-balance technique was then applied. An important feature of the harmonic balance technique was that it decoupled all equations to simple sine waveforms in a style that resembled Fourier series. Results yield torque pulsation, current and load characteristics in the steady state.


Sign in / Sign up

Export Citation Format

Share Document