Prediction of Asymmetric Tip Clearance Effect on Flow Redistributions in an Axial Compressor

Author(s):  
Young-Seok Kang ◽  
Shih-Hyoung Kang

Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution ‘seed’ results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is considered when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes take an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume of the circumferential momentum analysis leads to well-known Alford’s force. Alford’s force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford’s force at the high flow coefficient. Alford’s force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang (2006).

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Young-Seok Kang ◽  
Shin-Hyoung Kang

It is well-known that nonuniform tip clearance in an axial compressor induces pressure and velocity perturbations along the circumferential direction. This study develops a numerical modeling to predict perturbed flows in an axial compressor with a nonuniform tip clearance and presents a mechanism of the flow redistribution in the axial compressor at design and off-design conditions. The modeling results are compared with CFD results (2006, “Prediction of the Fluid Induced Instability Force of an Axial Compressor,” ASME FEDSM 2006, Miami, FL) not only to validate the present modeling, but also to investigate more detailed flow fields. In an axial compressor, nonuniform tip clearance varies local flow passage area and resultant axial velocity along the circumferential direction. There are small axial velocity differences between maximum and minimum clearances near the design condition, while large pressure differences are investigated according to local locations. However, contribution of the main flow region overrides the tip clearance effect as the flow coefficient deviates from the design condition. Moreover, the flow field redistribution becomes noticeably strong when the off-design effects are incorporated. In case of high flow coefficients, the low relative flow angle near the minimum clearance regions results in a large negative incidence angle and forms a large flow recirculation region and a corresponding large amount of loss occurs near the blade pressure surface. It further promotes strong flow field perturbations at the off-design conditions. The integration of these pressure and blade loading perturbations with a control volume analysis leads to the well-known Alford’s force. Alford’s force is always negative near the design condition; however, it reverses its sign to positive at the high flow coefficients. At the high flow coefficients, tip leakage flow effects lessen, while increased off-design effects amplify blade loading perturbations and a steep increase in Alford’s force. This study enables that nonuniform flow field, and the resultant Alford’s force, which may result in an unstable rotor-dynamic behavior, can be easily evaluated and assessed during the compressor, fan, or blower design process.


Author(s):  
Marcus Lejon ◽  
Tomas Grönstedt ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

Delaying breakdown of the flow in the tip region of a tip-critical compressor rotor as long as possible, i.e. improving the surge margin, is of great interest to the turbomachinery community and is the focus of this study. The surge margin of ten compressor rotors is evaluated numerically, each with different blade loading and geometry at the tip. Previous work in the field has shown the dependence of an interface in the tip region of a compressor rotor between the incoming flow and the tip clearance flow with the passage flow coefficient ϕ. Previous work in the field has also shown that a higher incoming meridional momentum in the tip region can be beneficial to the surge margin of a tip-critical rotor. The present study generalizes these findings by taking into account the local blade loading of the rotor tip section and the level of loss in the tip region. The surge margin is found to improve if the blade loading of the rotor tip section is increased, which acts to increase the incoming mass flow rate and improve the surge margin provided that an increase in loss, mainly related to the strength and direction of the tip clearance flow, does not negate the effect as the compressor is throttled. Two quantities are proposed as objective functions to be used for optimization to achieve a compressor rotor with high surge margin based on the flow field at the design point. Finally, an optimization and analysis of the results is made to demonstrate the proposed objective functions in practise.


Author(s):  
Young-Seok Kang ◽  
Shin-Hyoung Kang

Numerical calculations of a rotor row of a low speed axial compressor with an asymmetric tip clearance distribution were carried out. Asymmetric tip clearance induces blade loading and downstream pressure redistribution along the circumferential direction while upstream pressure field is maintained. At small flow coefficients, blade loading redistribution patterns are highly affected by upper 50% blade span region. High pressure difference at the small clearance region causes high blade loading at the small clearance region. On the other hand, at a high flow coefficient, blade loading redistribution is almost coincident with the asymmetric tip clearance distribution. In contrast to lower flow coefficients, the contribution of the lower 50% blade span region increases. A higher axial velocity induces a higher axial momentum, which delivers the upstream pressure field downstream without any circumferential redistribution. Blade loading redistribution due to increased axial momentum overcomes the redistribution caused by local tip clearance performance due to high pressure difference at the small clearance and becomes the dominant term of blade loading redistribution. As a result, the redistributed blade loading synchronizes with the tip clearance distribution and the strength of the blade loading redistribution increases as the flow coefficient increases.


2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


Author(s):  
Chengwu Yang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
Junqiang Zhu

The clearance size of cantilevered stators affects the performance and stability of axial compressors significantly. Numerical calculations were carried out using the commercial software FINE/Turbo for a 2.5-stage highly loaded transonic axial compressor, which is of cantilevered stator for the first stage, at varying hub clearance sizes. The aim of this work is to improve understanding of the impact mechanism of hub clearance on the performance and the flow field in high flow turning conditions. The performance of the front stage and the compressor with different hub clearance sizes of the first stator has been analyzed firstly. Results show that the efficiency decreases as clearance size varies from 0 to 3% of hub chordlength, but the operating range has been extended. For the first stage, the efficiency decreases about 0.5% and the stall margin is extended. The following analysis of detailed flow field in the first stator shows that the clearance leakage flow and elimination of hub corner separation is responsible for the increasing loss and stall margin extending respectively. The effects of hub clearance on the downstream rotor have been discussed lastly. It indicates that the loss of the rotor increases and the flow deteriorates due to increasing of clearance size and hence the leakage mass flow rate, which mainly results from the interaction of upstream leakage flow with the passage flow near pressure surface. The affected region of rotor passage flow field expands in spanwise and streamwise direction as clearance size grows. The hub clearance leakage flow moves upward in span as it flows toward downstream.


Author(s):  
Adam R. Hickman ◽  
Scott C. Morris

Flow field measurements of a high-speed axial compressor are presented during pre-stall and post-stall conditions. The paper provides an analysis of measurements from a circumferential array of unsteady shroud static pressure sensors during stall cell development. At low-speed, the stall cell approached a stable size in approximately two rotor revolutions. At higher speeds, the stall cell developed within a short amount of time after stall inception, but then fluctuated in circumferential extent as the compressor transiently approached a stable post-stall operating point. The size of the stall cell was found to be related to the annulus average flow coefficient. A discussion of Phase-Locked Average (PLA) statistics on flow field measurements during stable operation is also included. In conditions where rotating stall is present, flow field measurements can be Double Phase-Locked Averaged (DPLA) using a once-per-revolution (1/Rev) pulse and the period of the stall cell. The DPLA method provides greater detail and understanding into the structure of the stall cell. DPLA data indicated that a stalled compressor annulus can be considered to contained three main regions: over-pressurized passages, stalled passages, and recovering passages. Within the over-pressured region, rotor passages exhibited increased blade loading and pressure ratio compared to pre-stall values.


2003 ◽  
Vol 125 (3) ◽  
pp. 405-415
Author(s):  
Ammar A. Al-Nahwi ◽  
James D. Paduano ◽  
Samir A. Nayfeh

This paper presents a first principles-based model of the fluid-induced forces acting on the rotor of an axial compressor. These forces are primarily associated with the presence of a nonuniform flow field around the rotor, such as that produced by a rotor tip clearance asymmetry. Simple, analytical expressions for the forces as functions of basic flow field quantities are obtained. These expressions allow an intuitive understanding of the nature of the forces and—when combined with a rudimentary model of an axial compressor flow field (the Moore-Greitzer model)—enable computation of the forces as a function of compressor geometry, torque and pressure-rise characteristics, and operating point. The forces predicted by the model are also compared to recently published measurements and more complex analytical models, and are found to be in reasonable agreement. The model elucidates that the fluid-induced forces comprise three main contributions: fluid turning in the rotor blades, pressure distribution around the rotor, and unsteady momentum storage within the rotor. The model also confirms recent efforts in that the orientation of fluid-induced forces is locked to the flow nonuniformity, not to tip clearance asymmetry as is traditionally assumed. The turning and pressure force contributions are shown to be of comparable magnitudes—and therefore of equal importance—for operating points between the design point and the peak of the compressor characteristic. Within this operating range, both “forward” and “backward” rotor whirl tendencies are shown to be possible. This work extends recent efforts by developing a more complete, yet compact, description of fluid-induced forces in that it accounts for all relevant force contributions, both tangential and radial, that may influence the dynamics of the rotor. Hence it constitutes an essential element of a consistent treatment of rotordynamic stability under the action of fluid-induced forces, which is the subject of Part II of this paper.


Author(s):  
Masanao Kaneko ◽  
Hoshio Tsujita

A transonic centrifugal compressor impeller is generally composed of the main and the splitter blades which are different in chord length. As a result, the tip leakage flows from the main and the splitter blades interact with each other and then complicate the flow field in the compressor. In this study, in order to clarify the individual influences of these leakage flows on the flow field in the transonic centrifugal compressor stage at near-choke to near-stall condition, the flows in the compressor at four conditions prescribed by the presence and the absence of the tip clearances were analyzed numerically. The computed results clarified the following noticeable phenomena. The tip clearance of the main blade induces the tip leakage vortex from the leading edge of the main blade. This vortex decreases the blade loading of the main blade to the negative value by the increase of the flow acceleration along the suction surface of the splitter blade, and consequently induces the tip leakage vortex caused by the negative blade loading of the main blade at any operating points. These phenomena decline the impeller efficiency. On the other hand, the tip clearance of the splitter blade decreases the afore mentioned acceleration by the formation of the tip leakage vortex from the leading edge of the splitter blade and the decrease of the incidence angle for the splitter blade caused by the suction of the flow into the tip clearance. These phenomena reduce the loss generated by the negative blade loading of the main blade and consequently reduce the decline of the impeller efficiency. Moreover, the tip clearances enlarge the flow separation around the diffuser inlet and then decline the diffuser performance independently of the operating points.


Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.


Sign in / Sign up

Export Citation Format

Share Document