Some Observations on the Computational Sensitivity of Rotating Cavity Flows

Author(s):  
Tom Hickling ◽  
Li He

Abstract Heat transfer inside rotating cavities plays an important role in gas turbine engineering. Flows in both compressors and turbine internal flow cavities exhibit self-generated large-scale inertial wave structures, and buoyancy effects are often important. Across the open literature on the topic, there seems to be no clear consensus on what the most suitable modelling fidelity is — although it is a widely held opinion that URANS approaches are less suitable than LES, many authors have succeeded in getting reasonable heat transfer results with URANS. There is also little knowledge of the validity of hybrid URANS/LES type approaches (such as DES) when it comes to predicting the heat transfer in these flows, and furthermore, on the sensitivity of the flow model validity to local driving aerothermal mechanisms in different parts of the cavity. This paper presents the results of a systematic investigation of a rotating cavity with axial throughflow at a Grashof number of 3 × 109. It is found that, for the case investigated, the disk Ekman layers remain laminar. This causes the disk heat transfer to be relatively insensitive to the modelling fidelity used with URANS, DES, and LES giving similar results. The effect of the disk thermal boundary condition is also investigated — it is found to have a significant effect on the direction of the near-wall flow at high radii, despite the large-scale flow structure within the cavity remaining essentially unchanged. This feedback of the disk heat transfer to the near-disk aerodynamics implies that conjugate heat transfer computations of rotating cavities may be worth investigating. On the shroud, URANS fails to resolve the heat transfer enhancement from small-scale buoyancy driven streaks, whilst these are captured by LES. DES also captures these streaks, as the URANS layer within which they are located returns a very small eddy viscosity, and behaves in a similar manner to LES.

2011 ◽  
Vol 676 ◽  
pp. 1-4 ◽  
Author(s):  
KE-QING XIA

How internal flow states can influence the global transport properties in a turbulent system has always been an intriguing question. Weiss & Ahlers (J. Fluid Mech., this issue, vol. 676, 2011, pp. 5–40) have provided an example by measuring the instantaneous Nusselt number in turbulent Rayleigh-Bénard convection and correlating it to the different modes of large-scale flow.


2003 ◽  
Vol 474 ◽  
pp. 299-318 ◽  
Author(s):  
JACQUES VANNESTE

The weakly nonlinear dynamics of quasi-geostrophic flows over a one-dimensional, periodic or random, small-scale topography is investigated using an asymptotic approach. Averaged (or homogenized) evolution equations which account for the flow–topography interaction are derived for both homogeneous and continuously stratified quasi-geostrophic fluids. The scaling assumptions are detailed in each case; for stratified fluids, they imply that the direct influence of the topography is confined within a thin bottom boundary layer, so that it is through a new bottom boundary condition that the topography affects the large-scale flow. For both homogeneous and stratified fluids, a single scalar function entirely encapsulates the properties of the topography that are relevant to the large-scale flow: it is the correlation function of the topographic height in the homogeneous case, and a linear transform thereof in the continuously stratified case.Some properties of the averaged equations are discussed. Explicit nonlinear solutions in the form of one-dimensional travelling waves can be found. In the homogeneous case, previously studied by Volosov, they obey a second-order differential equation; in the stratified case on which we focus they obey a nonlinear pseudodifferential equation, which reduces to the Peierls–Nabarro equation for sinusoidal topography. The known solutions to this equation provide examples of nonlinear periodic and solitary waves in continuously stratified fluid over topography.The influence of bottom topography on large-scale baroclinic instability is also examined using the averaged equations: they allow a straightforward extension of Eady's model which demonstrates the stabilizing effect of topography on baroclinic instability.


2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.


1999 ◽  
Author(s):  
K. N. Rainey ◽  
S. M. You

Abstract The present research is an experimental study of “double enhancement” behavior in pool boiling from heater surfaces simulating microelectronic devices immersed in saturated FC-72 at atmospheric pressure. The term “double enhancement” refers to the combination of two different enhancement techniques: a large-scale area enhancement (square pin fin array) and a small-scale surface enhancement (microporous coating). Fin lengths were varied from 0 (flat surface) to 8 mm. Effects of this double enhancement technique on critical heat flux (CHF) and nucleate boiling heat transfer in the horizontal orientation (fins are vertical) are investigated. Results showed significant increases in nucleate boiling heat transfer coefficients with the application of the microporous coating to the heater surfaces. CHF was found to be relatively insensitive to surface microstructure for the finned surfaces except in the case of the surface with 8 mm long fins. The nucleate boiling and CHF behavior has been found to be the result of multiple, counteracting mechanisms: surface area enhancement, fin efficiency, surface microstructure (active nucleation site density), vapor bubble departure resistance, and re-wetting liquid flow resistance.


2019 ◽  
Vol 876 ◽  
pp. 1108-1128 ◽  
Author(s):  
Till Zürner ◽  
Felix Schindler ◽  
Tobias Vogt ◽  
Sven Eckert ◽  
Jörg Schumacher

Combined measurements of velocity components and temperature in a turbulent Rayleigh–Bénard convection flow at a low Prandtl number of $Pr=0.029$ and Rayleigh numbers of $10^{6}\leqslant Ra\leqslant 6\times 10^{7}$ are conducted in a series of experiments with durations of more than a thousand free-fall time units. Multiple crossing ultrasound beam lines and an array of thermocouples at mid-height allow for a detailed analysis and characterization of the complex three-dimensional dynamics of the single large-scale circulation roll in a cylindrical convection cell of unit aspect ratio which is filled with the liquid metal alloy GaInSn. We measure the internal temporal correlations of the complex large-scale flow and distinguish between short-term oscillations associated with a sloshing motion in the mid-plane as well as varying orientation angles of the velocity close to the top/bottom plates and the slow azimuthal drift of the mean orientation of the roll as a whole that proceeds on a time scale up to a hundred times slower. The coherent large-scale circulation drives a vigorous turbulence in the whole cell that is quantified by direct Reynolds number measurements at different locations in the cell. The velocity increment statistics in the bulk of the cell displays characteristic properties of intermittent small-scale fluid turbulence. We also show that the impact of the symmetry-breaking large-scale flow persists to small-scale velocity fluctuations thus preventing the establishment of fully isotropic turbulence in the cell centre. Reynolds number amplitudes depend sensitively on beam-line position in the cell such that different definitions have to be compared. The global momentum and heat transfer scalings with Rayleigh number are found to agree with those of direct numerical simulations and other laboratory experiments.


2013 ◽  
Vol 731 ◽  
Author(s):  
Grégoire Lemoult ◽  
Jean-Luc Aider ◽  
José Eduardo Wesfreid

AbstractUsing a large-time-resolved particle image velocimetry field of view, a developing turbulent spot is followed in space and time in a rectangular channel flow for more than 100 advective time units. We show that the flow can be decomposed into a large-scale motion consisting of an asymmetric quadrupole centred on the spot and a small-scale part consisting of streamwise streaks. From the temporal evolution of the energy of the streamwise and spanwise velocity perturbations, it is suggested that a self-sustaining process can occur in a turbulent spot above a given Reynolds number.


2000 ◽  
Vol 407 ◽  
pp. 105-122 ◽  
Author(s):  
JACQUES VANNESTE

The effect of a small-scale topography on large-scale, small-amplitude oceanic motion is analysed using a two-dimensional quasi-geostrophic model that includes free-surface and β effects, Ekman friction and viscous (or turbulent) dissipation. The topography is two-dimensional and periodic; its slope is assumed to be much larger than the ratio of the ocean depth to the Earth's radius. An averaged equation of motion is derived for flows with spatial scales that are much larger than the scale of the topography and either (i) much larger than or (ii) comparable to the radius of deformation. Compared to the standard quasi-geostrophic equation, this averaged equation contains an additional dissipative term that results from the interaction between topography and dissipation. In case (i) this term simply represents an additional Ekman friction, whereas in case (ii) it is given by an integral over the history of the large-scale flow. The properties of the additional term are studied in detail. For case (i) in particular, numerical calculations are employed to analyse the dependence of the additional Ekman friction on the structure of the topography and on the strength of the original dissipation mechanisms.


1990 ◽  
Vol 112 (2) ◽  
pp. 465-471 ◽  
Author(s):  
K. H. Chang ◽  
L. C. Witte

Liquid-solid contacts were measured for flow film boiling of subcooled Freon-11 over an electrically heated cylinder equipped with a surface microthermocouple probe. No systematic variation of the extent of liquid-solid contact with wall superheat, liquid subcooling, or velocity was detected. Only random small-scale contacts that contribute negligibly to overall heat transfer were detected when the surface was above the homogeneous nucleation temperature of the Freon-11. When large-scale contacts were detected, they led to an unexpected intermediate transition from local film boiling to local transition boiling. An explanation is proposed for these unexpected transitions. A comparison of analytical results that used experimentally determined liquid-solid contact parameters to experimental heat fluxes did not show good agreement. It was concluded that the available model for heat transfer accounting for liquid-solid contact is not adequate for flow film boiling.


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


Sign in / Sign up

Export Citation Format

Share Document