Evaluation of a Flow Measurement Probe Influence on the Flow Field in High Speed Axial Compressors

2021 ◽  
Author(s):  
Ryosuke Seki ◽  
Satoshi Yamashita ◽  
Ryosuke Mito

Abstract The aerodynamic effects of a probe for stage performance evaluation in a high-speed axial compressor are investigated. Regarding the probe measurement accuracy and its aerodynamic effects, the upstream/downstream effects on the probe and probe insertion effects are studied by using an unsteady computational fluid dynamics (CFD) analysis and by verifying in two types of multistage high-speed axial compressor measurements. The probe traverse measurements were conducted at the stator inlet and outlet in each case to evaluate blade row performance quantitatively and its flow field. In the past study, the simple approximation method was carried out which considered only the interference of the probe effect based on the reduction of the mass flow by the probe blockage for the compressor performance, but it did not agree well with the measured results. In order to correctly and quantitatively grasp the mechanism of the flow field when the probe is inserted, the unsteady calculation including the probe geometry was carried out in the present study. Unsteady calculation was performed with a probe inserted completely between the rotor and stator of a 4-stage axial compressor. Since the probe blockage and potential flow field, which mean the pressure change region induced by the probe, change the operating point of the upstream rotor and increase the work of the rotor. Compared the measurement result with probe to a kiel probe setting in the stator leading edge, the total pressure was increased about 2,000Pa at the probe tip. In addition, the developed wake by the probe interferes with the downstream stator row and locally changes the static pressure at the stator exit. To evaluate the probe insertion effect, unsteady calculations with probe at three different immersion heights at the stator downstream in an 8-stage axial compressor are performed. The static pressure value of the probe tip was increased about 3,000Pa in the hub region compared to tip region, this increase corresponds to the measurement trend. On the other hand, the measured wall static pressure showed that there is no drastic change in the radial direction. In addition, when the probe is inserted from the tip to hub region in the measurement, the blockage induced by the probe was increased. As a result, operating point of the stator was locally changed, and the rise of static pressure of the stator increased when the stator incidence changed. These typical results show that unsteady simulations including probe geometry can accurately evaluate the aerodynamic effects of probes in the high-speed axial compressor. Therefore, since the probe will pinpointed and strong affects the practically local flow field in all rotor upstream passage and stator downstream, as for the probe measurement, it is important to pay attention to design the probe diameter, the distance from the blade row, and its relative position to the downstream stator. From the above investigations, a newly simple approximation method which includes the effect of the pressure change evaluation by the probe is proposed, and it is verified in the 4-stage compressor case as an example. In this method, the effects of the distance between the rotor trailing edge (T.E.) and the probe are considered by the theory of the incompressible two-dimensional potential flow. The probe blockage decreases the mass flow rate and changes the operating point of the compressor. The verification results conducted in real compressor indicate that the correct blockage approximation enables designer to estimate aerodynamic effects of the probe correctly.

Author(s):  
Adam R. Hickman ◽  
Scott C. Morris

Flow field measurements of a high-speed axial compressor are presented during pre-stall and post-stall conditions. The paper provides an analysis of measurements from a circumferential array of unsteady shroud static pressure sensors during stall cell development. At low-speed, the stall cell approached a stable size in approximately two rotor revolutions. At higher speeds, the stall cell developed within a short amount of time after stall inception, but then fluctuated in circumferential extent as the compressor transiently approached a stable post-stall operating point. The size of the stall cell was found to be related to the annulus average flow coefficient. A discussion of Phase-Locked Average (PLA) statistics on flow field measurements during stable operation is also included. In conditions where rotating stall is present, flow field measurements can be Double Phase-Locked Averaged (DPLA) using a once-per-revolution (1/Rev) pulse and the period of the stall cell. The DPLA method provides greater detail and understanding into the structure of the stall cell. DPLA data indicated that a stalled compressor annulus can be considered to contained three main regions: over-pressurized passages, stalled passages, and recovering passages. Within the over-pressured region, rotor passages exhibited increased blade loading and pressure ratio compared to pre-stall values.


2004 ◽  
Vol 126 (3) ◽  
pp. 333-338 ◽  
Author(s):  
Axel Fischer ◽  
Walter Riess ◽  
Joerg R. Seume

The FVV sponsored project “Bow Blading” (cf. acknowledgments) at the Turbomachinery Laboratory of the University of Hannover addresses the effect of strongly bowed stator vanes on the flow field in a four-stage high-speed axial compressor with controlled diffusion airfoil (CDA) blading. The compressor is equipped with more strongly bowed vanes than have previously been reported in the literature. The performance map of the present compressor is being investigated experimentally and numerically. The results show that the pressure ratio and the efficiency at the design point and at the choke limit are reduced by the increase in friction losses on the surface of the bowed vanes, whose surface area is greater than that of the reference (CDA) vanes. The mass flow at the choke limit decreases for the same reason. Because of the change in the radial distribution of axial velocity, pressure rise shifts from stage 3 to stage 4 between the choke limit and maximum pressure ratio. Beyond the point of maximum pressure ratio, this effect is not distinguishable from the reduction of separation by the bow of the vanes. Experimental results show that in cases of high aerodynamic loading, i.e., between maximum pressure ratio and the stall limit, separation is reduced in the bowed stator vanes so that the stagnation pressure ratio and efficiency are increased by the change to bowed stators. It is shown that the reduction of separation with bowed vanes leads to a increase of static pressure rise towards lower mass flow so that the present bow bladed compressor achieves higher static pressure ratios at the stall limit.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyuan Lou ◽  
John Charles Fabian ◽  
Nicole Leanne Key

This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.


Author(s):  
Jan Siemann ◽  
Ingolf Krenz ◽  
Joerg R. Seume

Reducing the fuel consumption is a main objective in the development of modern aircraft engines. Focusing on aircraft for mid-range flight distances, a significant potential to increase the engines overall efficiency at off-design conditions exists in reducing secondary flow losses of the compressor. For this purpose, Active Flow Control (AFC) by aspiration or injection of fluid at near wall regions is a promising approach. To experimentally investigate the aerodynamic benefits of AFC by aspiration, a 4½-stage high-speed axial-compressor at the Leibniz Universitaet Hannover was equipped with one AFC stator row. The numerical design of the AFC-stator showed significant hub corner separations in the first and second stator for the reference configuration at the 80% part-load speed-line near stall. Through the application of aspiration at the first stator, the numerical simulations predict the complete suppression of the corner separation not only in the first, but also in the second stator. This leads to a relative increase in overall isentropic efficiency of 1.47% and in overall total pressure ratio of 4.16% compared to the reference configuration. To put aspiration into practice, the high-speed axial-compressor was then equipped with a secondary air system and the AFC stator row in the first stage. All experiments with AFC were performed for a relative aspiration mass flow of less than 0.5% of the main flow. Besides the part-load speed-lines of 55% and 80%, the flow field downstream of each blade row was measured at the AFC design point. Experimental results are in good agreement with the numerical predictions. The use of AFC leads to an increase in operating range at the 55% part-load speed-line of at least 19%, whereas at the 80% part-load speed-line no extension of operating range occurs. Both speed-lines, however, do show a gain in total pressure ratio and isentropic efficiency for the AFC configuration compared to the reference configuration. Compared to the AFC design point, the isentropic efficiency ηis rises by 1.45%, whereas the total pressure ratio Πtot increases by 1.47%. The analysis of local flow field data shows that the hub corner separation in the first stator is reduced by aspiration, whereas in the second stator the hub corner separation slightly increases. The application of AFC in the first stage further changes the stage loading in all downstream stages. While the first and third stage become unloaded by application of AFC, the loading in terms of the De-Haller number increases in the second and especially in the fourth stage. Furthermore, in the reference as well as in the AFC configuration, the fourth stator performs significantly better than predicted by numerical results.


1997 ◽  
Vol 119 (4) ◽  
pp. 723-732 ◽  
Author(s):  
W. G. Joo ◽  
T. P. Hynes

This paper describes the development of actuator disk models to simulate the asymmetric flow through high-speed low hub-to-tip ratio blade rows. The actuator disks represent boundaries between regions of the flow in which the flow field is solved by numerical computation. The appropriate boundary conditions and their numerical implementation are described, and particular attention is paid to the problem of simulating the effect of blade row blockage near choking conditions. Guidelines on choice of axial position of the disk are reported. In addition, semi-actuator disk models are briefly described and the limitations in the application of the model to supersonic flow are discussed.


Author(s):  
Johannes Schreiber ◽  
Xavier Ottavy ◽  
Ghislaine Ngo Boum ◽  
Stéphane Aubert ◽  
Frédéric Sicot

The following numerical investigations are performed in the frame of a research project that aims at a better understanding of the flow unsteadiness that develops in a multistage high-speed axial compressor. First, the paper presents a new version of the 3.5 stages high-speed axial compressor CREATE (Compresseur de Recherche pour l’Etude des effets Aérodynamiques et TEchnologiques), which has been designed by Snecma and is based at the LMFA (Laboratory for Fluid Mechanics and Acoustics) on a 2MW test rig. This paper is based on numerical results obtained with 3D steady and unsteady RANS computations using the CREATE configuration. The unsteady RANS simulations are carried out over the whole spatial and temporal periodicity of the compressor. The main numerical setup has been fixed according to the state of the art. Second, the effect of three different time discretizations on the flow field in CREATE is discussed. The global performance of the compressor is not significantly affected. However the change in the time discretization impacts the structure of the flow at specific locations. The main focus of this study lies on the transport of flow structures and the analysis of their interactions. A double modal decomposition method, which highlights the specific contribution of the interactions on the overall flow field, is applied for the study of the highly complex and unsteady flow field. It allows identifying which interactions are more sensitive to the change in the time discretization.


1999 ◽  
Vol 121 (2) ◽  
pp. 365-375 ◽  
Author(s):  
H. M. Saxer-Felici ◽  
A. P. Saxer ◽  
A. Inderbitzin ◽  
G. Gyarmathy

This paper presents a parallel numerical and experimental study of rotating stall cells in an axial compressor. Based on previous theoretical and experimental studies stressing the importance of fluid inertia and momentum exchange mechanisms in rotating stall, a numerical simulation using the Euler equations is conducted. Unsteady two-dimensional solutions of rotating stall behavior are obtained in a one-stage low subsonic axial compressor. The structure and speed of propagation of one fully developed rotating stall cell together with its associated unsteady static pressure and throughflow field distributions are presented. The numerical capture of a stalled flow region starting from a stable high-flow operating point with an axisymmetric flow distribution and evolving at a reduced mass flow operating point into a rotating stall pattern is also discussed. The experimental data (flow visualization, time-averaged and unsteady row-by-row static pressure measurements) acquired in a four-stage water model of a subsonic axial compressor cover a complete characteristic line ranging from high mass flow in the stable regime to zero throughflow. Stall inception is presented together with clearly marked different operating zones within the unstable regime. For one operating point in the unstable regime, the speed of propagation of the cell as well as the static pressure spikes at the front and rear boundaries of the rotating stall cell are compared between computations, measurements, and an idealized theory based on momentum exchange between blade rows entering and leaving the stalled cell. In addition, the time evolution of the pressure trace at the rotor/stator interface is presented. This study seems to support the assumption that the cell structure and general mechanism of full-span rotating stall propagation are essentially governed by inertial effects and momentum exchange between the sound and stalled flow at the cell edges.


Author(s):  
H. M. Saxer-Felici ◽  
A. P. Saxer ◽  
A. Inderbitzin ◽  
G. Gyarmathy

This paper presents a parallel numerical and experimental study of rotating stall cells in an axial compressor. Based on previous theoretical and experimental studies stressing the importance of fluid inertia and momentum exchange mechanisms in rotating stall, a numerical simulation using the Euler equations is conducted. Unsteady 2-D solutions of rotating stall behavior are obtained in a one-stage low subsonic axial compressor. The structure and speed of propagation of one fully developed rotating stall cell together with its associated unsteady static pressure and throughflow field distributions are presented. The numerical capture of a stalled flow region starting from a stable high-flow operating point with an axisymmetric flow distribution and evolving at a reduced mass flow operating point into a rotating stall pattern is also discussed. The experimental data (flow visualization, time-averaged and unsteady row-by-row static pressure measurements) acquired in a four-stage water model of a subsonic axial compressor covers a complete characteristic line ranging from high mass flow in the stable regime to zero throughflow. Stall inception is presented together with clearly marked different operating zones within the unstable regime. For one operating point in the unstable regime, the speed of propagation of the cell as well as the static pressure spikes at the front and rear boundaries of the rotating stall cell are compared between computations, measurements and an idealized theory based on momentum exchange between blade rows entering and leaving the stalled cell. In addition, the time-evolution of the pressure trace at the rotor/stator interface is presented. This study seems to support the assumption that the cell structure and general mechanism of full-span rotating stall propagation are essentially governed by inertial effects and momentum exchange between the sound and stalled flow at the cell edges.


Author(s):  
Axel Fischer ◽  
Walter Riess ◽  
Joerg R. Seume

The FVV-sponsored-Project “Bow Blading” (c.f. acknowledgments) at the Turbomachinery Laboratory of the University of Hannover addresses the effect of strongly bowed stator vanes on the flow field in an 4-stage high speed axial compressor with controlled diffusion airfoil (CDA) blading. The compressor is equipped with more strongly bowed vanes than have previously been reported in the literature. The performance map of the present compressor is being investigated experimentally and numerically. The results show that the pressure ratio and the efficiency at the design point and at the choke limit are reduced by the increase in friction losses on the surface of the bowed vanes, whose surface area is greater than that of the reference (CDA) vanes. The mass flow at the choke limit decreases for the same reason. Because of the change in the radial distribution of axial velocity, pressure rise shifts from stage 3 to stage 4 between the choke limit and maximum pressure ratio. Beyond the point of maximum pressure ratio, this effect is not distinguishable from the reduction of separation by the bow of the vanes. Experimental results show that in cases of high aerodynamic loading, i.e. between maximum pressure ratio and the stall limit, separation is reduced in the bowed stator vanes so that the stagnation pressure ratio and efficiency are increased by the change to bowed stators. It is shown that the reduction of separation with bowed vanes leads to a increase of static pressure rise towards lower mass flow so that the present bow bladed compressor achieves higher static pressure ratios at the stall limit.


Author(s):  
A. J. Sanders

This paper describes the identification and prediction of a new class of non-synchronous vibration (NSV) problem encountered during the development of an advanced composite fan stator for an aircraft engine application. Variable exhaust nozzle testing on an instrumented engine is used to map out the NSV boundary, with both choke- and stall-side instability zones present that converge toward the nominal fan operating line and place a limit on the high-speed operating range. Time-accurate three-dimensional viscous CFD analyses are used to demonstrate the NSV instability is being driven by dynamic stalling of the fan stator due to unsteady shock-boundary layer interaction. The effects of downstream struts in the front frame of the engine are found to exasperate the problem, with the two fat service struts in the bypass duct generating significant spatial variations in the stator flow field. Strain gage measurements indicate that the stator vanes experiencing the highest vibratory strains correspond to the low static pressure regions of the fan stator assembly located approximately 90 degrees away from the two fat struts. The CFD analyses confirm the low static pressure sectors of the stator assembly are the passages in which the flow-induced NSV instability is initiated due to localized choking phenomena. The CFD predictions of the instability frequency are in reasonable agreement with the strain gage data, with the strain gage data indicating that the NSV response occurs at a frequency approximately 25% below the frequency of the fundamental bending mode. The flow patterns predicted by the CFD analyses are also correlated with the results of an engine flow visualization test to demonstrate the complex nature of the fan stator flow field.


Sign in / Sign up

Export Citation Format

Share Document