Performance of Strongly Bowed Stators in a Four-Stage High-Speed Compressor

2004 ◽  
Vol 126 (3) ◽  
pp. 333-338 ◽  
Author(s):  
Axel Fischer ◽  
Walter Riess ◽  
Joerg R. Seume

The FVV sponsored project “Bow Blading” (cf. acknowledgments) at the Turbomachinery Laboratory of the University of Hannover addresses the effect of strongly bowed stator vanes on the flow field in a four-stage high-speed axial compressor with controlled diffusion airfoil (CDA) blading. The compressor is equipped with more strongly bowed vanes than have previously been reported in the literature. The performance map of the present compressor is being investigated experimentally and numerically. The results show that the pressure ratio and the efficiency at the design point and at the choke limit are reduced by the increase in friction losses on the surface of the bowed vanes, whose surface area is greater than that of the reference (CDA) vanes. The mass flow at the choke limit decreases for the same reason. Because of the change in the radial distribution of axial velocity, pressure rise shifts from stage 3 to stage 4 between the choke limit and maximum pressure ratio. Beyond the point of maximum pressure ratio, this effect is not distinguishable from the reduction of separation by the bow of the vanes. Experimental results show that in cases of high aerodynamic loading, i.e., between maximum pressure ratio and the stall limit, separation is reduced in the bowed stator vanes so that the stagnation pressure ratio and efficiency are increased by the change to bowed stators. It is shown that the reduction of separation with bowed vanes leads to a increase of static pressure rise towards lower mass flow so that the present bow bladed compressor achieves higher static pressure ratios at the stall limit.

Author(s):  
Axel Fischer ◽  
Walter Riess ◽  
Joerg R. Seume

The FVV-sponsored-Project “Bow Blading” (c.f. acknowledgments) at the Turbomachinery Laboratory of the University of Hannover addresses the effect of strongly bowed stator vanes on the flow field in an 4-stage high speed axial compressor with controlled diffusion airfoil (CDA) blading. The compressor is equipped with more strongly bowed vanes than have previously been reported in the literature. The performance map of the present compressor is being investigated experimentally and numerically. The results show that the pressure ratio and the efficiency at the design point and at the choke limit are reduced by the increase in friction losses on the surface of the bowed vanes, whose surface area is greater than that of the reference (CDA) vanes. The mass flow at the choke limit decreases for the same reason. Because of the change in the radial distribution of axial velocity, pressure rise shifts from stage 3 to stage 4 between the choke limit and maximum pressure ratio. Beyond the point of maximum pressure ratio, this effect is not distinguishable from the reduction of separation by the bow of the vanes. Experimental results show that in cases of high aerodynamic loading, i.e. between maximum pressure ratio and the stall limit, separation is reduced in the bowed stator vanes so that the stagnation pressure ratio and efficiency are increased by the change to bowed stators. It is shown that the reduction of separation with bowed vanes leads to a increase of static pressure rise towards lower mass flow so that the present bow bladed compressor achieves higher static pressure ratios at the stall limit.


Author(s):  
C. H. Muller ◽  
A. Sabatiuk

The axial supersonic compressors of the “shock-in-rotor” type are under development for application to small gas turbines. A passage flow approach and passage criteria were used to design and develop the airfoils for the highly loaded rotor and stator blading of these 4 lb/sec machines. The overall stage performance values demonstrated to date are 2.06:1 pressure ratio at 78 percent adiabatic efficiency and 2.56:1 at 74.4 percent efficiency. The loss data and static pressure rise measured for the rotors and exit stators provide ample evidence that the higher design performance goals can be met.


Author(s):  
Julia E. Stephens ◽  
Sameer Kulkarni

Abstract Advancements in core compressor technologies are necessary for next generation, high Overall Pressure Ratio (OPR) turbofan engines. High pressure compressors (HPCs) for future engines are being designed with exit corrected mass flow rates less than 2.25 kg/s (5 lbm/s). In order to accurately measure the performance of these advanced designs, high accuracy measurements are needed in test facilities. The W7 High Speed Multistage Axial Compressor Facility at NASA Glenn Research Center has been used to acquire data for advanced compressor designs. This facility utilizes an advanced differential pressure flow meter called a V-Cone. The facility has historically tested components with physical mass flow rates in the range of 27 to 45 kg/s (60 to 100 lbm/s). As such, when the V-Cone was calibrated prior to installation, the calibrations focused on higher mass flow rates, and uncertainties in that regime range from 0.5% to 0.85%. However, for low mass flow rates under 9 kg/s (20 lbm/s), expected in tests of advanced high OPR HPCs rear stages, the uncertainties of the V-Cone exceed 2.5%. To address this, using a method similar to that utilized by the National Institute of Standards and Technology, an array of Critical Flow Venturi Nozzles (CFVs) was installed in the W7 test section and used to calibrate the V-Cone in 0.5 kg/s (1 lbm/s) increments up to 10.5 kg/s (23 lbm/s). This effort details the measurements and uncertainties associated with this calibration which resulted in a final uncertainty of the V-Cone measurements under 1%.


Author(s):  
F. Ferdaus ◽  
Nitish Kumar ◽  
G. Sakthivel ◽  
N. Raghukiran

Variation in the states of system, mass flow and pressure are some of the disturbances which are experienced by the compressors in the jet engine under working condition. One of the main factors that influence the efficiency of a jet engine is the pressure ratio. In order to achieve the required pressure ratio, we should have relatively a greater number of stages in the compressor that leads to an increase in the weight of the engine. The stator and rotor are the essential parts of an aircraft's axial compressor. CFD is used in order to evaluate the pressure ratio. In this paper, we are going to analyze a three-stage compressor instead of an actual six-stage compressor. The mass flow rate inside the control system can be used to maintain the stability of the system. Compressor weight and pressure ratio at each stage can be reduced if we have a clockwise and anti-clockwise rotating rotor. With the use of a universal gear system, the two clockwise rotors and one anti-clockwise rotor were analyzed. The main outlook of this work is to show the maximum pressure ratio of the compressor at the outlet with our desired configurations. In conclusion, it was shown that the weight of the aircraft engine can be effectively reduced.


2021 ◽  
Author(s):  
Ryosuke Seki ◽  
Satoshi Yamashita ◽  
Ryosuke Mito

Abstract The aerodynamic effects of a probe for stage performance evaluation in a high-speed axial compressor are investigated. Regarding the probe measurement accuracy and its aerodynamic effects, the upstream/downstream effects on the probe and probe insertion effects are studied by using an unsteady computational fluid dynamics (CFD) analysis and by verifying in two types of multistage high-speed axial compressor measurements. The probe traverse measurements were conducted at the stator inlet and outlet in each case to evaluate blade row performance quantitatively and its flow field. In the past study, the simple approximation method was carried out which considered only the interference of the probe effect based on the reduction of the mass flow by the probe blockage for the compressor performance, but it did not agree well with the measured results. In order to correctly and quantitatively grasp the mechanism of the flow field when the probe is inserted, the unsteady calculation including the probe geometry was carried out in the present study. Unsteady calculation was performed with a probe inserted completely between the rotor and stator of a 4-stage axial compressor. Since the probe blockage and potential flow field, which mean the pressure change region induced by the probe, change the operating point of the upstream rotor and increase the work of the rotor. Compared the measurement result with probe to a kiel probe setting in the stator leading edge, the total pressure was increased about 2,000Pa at the probe tip. In addition, the developed wake by the probe interferes with the downstream stator row and locally changes the static pressure at the stator exit. To evaluate the probe insertion effect, unsteady calculations with probe at three different immersion heights at the stator downstream in an 8-stage axial compressor are performed. The static pressure value of the probe tip was increased about 3,000Pa in the hub region compared to tip region, this increase corresponds to the measurement trend. On the other hand, the measured wall static pressure showed that there is no drastic change in the radial direction. In addition, when the probe is inserted from the tip to hub region in the measurement, the blockage induced by the probe was increased. As a result, operating point of the stator was locally changed, and the rise of static pressure of the stator increased when the stator incidence changed. These typical results show that unsteady simulations including probe geometry can accurately evaluate the aerodynamic effects of probes in the high-speed axial compressor. Therefore, since the probe will pinpointed and strong affects the practically local flow field in all rotor upstream passage and stator downstream, as for the probe measurement, it is important to pay attention to design the probe diameter, the distance from the blade row, and its relative position to the downstream stator. From the above investigations, a newly simple approximation method which includes the effect of the pressure change evaluation by the probe is proposed, and it is verified in the 4-stage compressor case as an example. In this method, the effects of the distance between the rotor trailing edge (T.E.) and the probe are considered by the theory of the incompressible two-dimensional potential flow. The probe blockage decreases the mass flow rate and changes the operating point of the compressor. The verification results conducted in real compressor indicate that the correct blockage approximation enables designer to estimate aerodynamic effects of the probe correctly.


Author(s):  
Adam R. Hickman ◽  
Scott C. Morris

Flow field measurements of a high-speed axial compressor are presented during pre-stall and post-stall conditions. The paper provides an analysis of measurements from a circumferential array of unsteady shroud static pressure sensors during stall cell development. At low-speed, the stall cell approached a stable size in approximately two rotor revolutions. At higher speeds, the stall cell developed within a short amount of time after stall inception, but then fluctuated in circumferential extent as the compressor transiently approached a stable post-stall operating point. The size of the stall cell was found to be related to the annulus average flow coefficient. A discussion of Phase-Locked Average (PLA) statistics on flow field measurements during stable operation is also included. In conditions where rotating stall is present, flow field measurements can be Double Phase-Locked Averaged (DPLA) using a once-per-revolution (1/Rev) pulse and the period of the stall cell. The DPLA method provides greater detail and understanding into the structure of the stall cell. DPLA data indicated that a stalled compressor annulus can be considered to contained three main regions: over-pressurized passages, stalled passages, and recovering passages. Within the over-pressured region, rotor passages exhibited increased blade loading and pressure ratio compared to pre-stall values.


Author(s):  
Paul Xiubao Huang ◽  
Robert S. Mazzawy

This paper is a continuing work from one author on the same topic of the transient aerodynamics during compressor stall/surge using a shock tube analogy by Huang [1, 2]. As observed by Mazzawy [3] for the high-speed high-pressure (HSHP) ratio compressors of the modern aero-engines, surge is an event characterized with the stoppage and reversal of engine flow within a matter of milliseconds. This large flow transient is accomplished through a pair of internally generated shock waves and expansion waves of high strength. The final results are often dramatic with a loud bang followed by the spewing out of flames from both the engine intake and exhaust, potentially damaging to the engine structure [3]. It has been demonstrated in the previous investigations by Marshall [4] and Huang [2] that the transient flow reversal phase of a surge cycle can be approximated by the shock tube analogy in understanding its generation mechanism and correlating the shock wave strength as a function of the pre-surge compressor pressure ratio. Kurkov [5] and Evans [8] used a guillotine analogy to estimate the inlet overpressure associated with the sudden flow stoppage associated with surge. This paper will expand the progressive surge model established by the shock tube analogy in [2] by including the dynamic effect of airflow stoppage using an “integrated-flow” sequential guillotine/shock tube model. It further investigates the surge formation (characterized by flow reversal) and propagation patterns (characterized by surge shock and expansion waves) after its generation at different locations inside a compressor. Calculations are conducted for a 12-stage compressor using this model under various surge onset stages and compared with previous experimental data [3]. The results demonstrate that the “integrated-flow” model closely replicates the fast moving surge shock wave overpressure from the stall initiation site to the compressor inlet.


2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closed- circuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the full- scale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyuan Lou ◽  
John Charles Fabian ◽  
Nicole Leanne Key

This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.


Author(s):  
P. Deregel ◽  
C. S. Tan

This paper addresses the causal link first described by Smith between the unsteady flow induced by the rotor wakes and the compressor steady-state performance. As an initial step, inviscid flow in a compressor stage is examined. First of a kind numerical simulations are carried out to show that if the rotor wakes are mixed out after (as opposed to before) the stator passage, the time-averaged overall static pressure rise is increased and the mixing loss is reduced. An analytical model is also presented and shown to agree with the numerical results; the model is then used to examine the parametric trends associated with compressor design parameters.


Sign in / Sign up

Export Citation Format

Share Document