Rotor Boundary Layer Response to an Impinging Wake

Volume 1 ◽  
2004 ◽  
Author(s):  
Francesco Soranna ◽  
Yi-Chih Chow ◽  
Oguz Uzol ◽  
Joseph Katz

This paper presents results of an experimental investigation on the response of a rotor boundary layer to an impinging Inlet Guide Vane (IGV) wake. High resolution two-dimensional Particle Image Velocimetry (PIV) measurements are conducted in a refractive index matched facility that provides an unobstructed view of the entire flow field. Data obtained at four different rotor phases, as the wake is chopped and passes by the rotor blade, allows us to examine the response of the rotor boundary layer to the mean flow and turbulence associated with the impinging wake. We focus on the suction side boundary layer in regions with adverse pressure gradients, from mid chord to the trailing edge. The phase-averaged velocity profiles are used for calculating the momentum and displacement thicknesses of the boundary layer, and for estimating the pressure gradients along the wall. Distributions of Reynolds stresses are also provided. The phase-averaged velocity profiles in the rotor boundary layer vary significantly with phase. During wake impingement the boundary layer becomes significantly thinner and more stable compared to other phases at the same location. Analysis of the possible causes for this trend suggests that the dominant contributors are unsteady, phase-dependent variation in pressure gradients along the wall.

2014 ◽  
Vol 748 ◽  
Author(s):  
Julio M. Barros ◽  
Kenneth T. Christensen

AbstractThe characteristics of a turbulent boundary layer overlying a complex roughness topography were explored with stereo particle-image velocimetry measurements in the wall-normal–spanwise $(y\mbox{--}z)$ plane. The roughness under consideration was replicated from a turbine blade damaged by deposition of foreign materials containing a broad range of topographical scales arranged in a highly irregular manner. The single-point turbulence statistics displayed strong spanwise heterogeneity, in particular spanwise-alternating low- and high-momentum flow pathways in the mean flow marked by enhanced Reynolds stresses and turbulent kinetic energy. The spanwise regions between high- and low-momentum flow pathways were occupied by swirling motions, suggesting the generation and sustainment of turbulent secondary flows due to the spanwise heterogeneity of the complex roughness under consideration. Similar observations were recently reported for more ordered spanwise roughness transitions by Nugroho, Hutchins & Monty (Intl J. Heat Fluid Flow vol. 41, 2013, pp. 90–102) and Willingham et al. (Phys. Fluids vol. 26, 2014, 025111).


2019 ◽  
Vol 880 ◽  
pp. 239-283 ◽  
Author(s):  
Christoph Wenzel ◽  
Tobias Gibis ◽  
Markus Kloker ◽  
Ulrich Rist

A direct numerical simulation study of self-similar compressible flat-plate turbulent boundary layers (TBLs) with pressure gradients (PGs) has been performed for inflow Mach numbers of 0.5 and 2.0. All cases are computed with smooth PGs for both favourable and adverse PG distributions (FPG, APG) and thus are akin to experiments using a reflected-wave set-up. The equilibrium character allows for a systematic comparison between sub- and supersonic cases, enabling the isolation of pure PG effects from Mach-number effects and thus an investigation of the validity of common compressibility transformations for compressible PG TBLs. It turned out that the kinematic Rotta–Clauser parameter $\unicode[STIX]{x1D6FD}_{K}$ calculated using the incompressible form of the boundary-layer displacement thickness as length scale is the appropriate similarity parameter to compare both sub- and supersonic cases. Whereas the subsonic APG cases show trends known from incompressible flow, the interpretation of the supersonic PG cases is intricate. Both sub- and supersonic regions exist in the boundary layer, which counteract in their spatial evolution. The boundary-layer thickness $\unicode[STIX]{x1D6FF}_{99}$ and the skin-friction coefficient $c_{f}$, for instance, are therefore in a comparable range for all compressible APG cases. The evaluation of local non-dimensionalized total and turbulent shear stresses shows an almost identical behaviour for both sub- and supersonic cases characterized by similar $\unicode[STIX]{x1D6FD}_{K}$, which indicates the (approximate) validity of Morkovin’s scaling/hypothesis also for compressible PG TBLs. Likewise, the local non-dimensionalized distributions of the mean-flow pressure and the pressure fluctuations are virtually invariant to the local Mach number for same $\unicode[STIX]{x1D6FD}_{K}$-cases. In the inner layer, the van Driest transformation collapses compressible mean-flow data of the streamwise velocity component well into their nearly incompressible counterparts with the same $\unicode[STIX]{x1D6FD}_{K}$. However, noticeable differences can be observed in the wake region of the velocity profiles, depending on the strength of the PG. For both sub- and supersonic cases the recovery factor was found to be significantly decreased by APGs and increased by FPGs, but also to remain virtually constant in regions of approximated equilibrium.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


1980 ◽  
Vol 102 (1) ◽  
pp. 88-95 ◽  
Author(s):  
D. A. Bailey

Laser-Doppler velocimetry was used to investigate the secondary flow in the endwall region of a large-scale turbine inlet-guide-vane passage. The mean and turbulent velocities were measured for three different test conditions. The different test conditions consisted of variations in the blade aspect ratio and the inlet boundary-layer thickness or all three cases, a passage vortex was identified and its development documented. The turbulent stresses within the vortex were found to be quite low in comparison with the turbulence in the inlet boundary layer.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Anirban Garai ◽  
Laslo T. Diosady ◽  
Scott M. Murman ◽  
Nateri K. Madavan

The application of a new computational capability for accurate and efficient high-fidelity scale-resolving simulations of turbomachinery is presented. The focus is on the prediction of heat transfer and boundary layer characteristics with comparisons to the experiments of Arts et al. (1990, “Aero–Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” von Karman Institute for Fluid Dynamics, Rhode St. Genese, Belgium, Technical Note No. 174.) for an uncooled, transonic, linear high-pressure turbine (HPT) inlet guide vane cascade that includes the effects of elevated inflow turbulence. The computational capability is based on an entropy-stable, discontinuous Galerkin (DG) spectral element approach that extends to arbitrarily high orders of spatial and temporal accuracy. The suction side of the vane undergoes natural transition for the clean inflow case, while bypass transition mechanisms are observed in the presence of elevated inflow turbulence. The airfoil suction-side boundary layer turbulence characteristics during the transition process thus differ significantly between the two cases. Traditional simulations based on the Reynolds-averaged Navier–Stokes (RANS) fail to predict these transition characteristics. The heat transfer characteristics for the simulations with clean inflow agree well with the experimental data, while the heat transfer characteristics for the bypass transition cases agree well with the experiment when higher inflow turbulence levels are prescribed. The differences between the clean and inflow turbulence cases are also highlighted through a detailed examination of the characteristics of the transitional and turbulent flow fields.


1979 ◽  
Vol 101 (3) ◽  
pp. 373-375
Author(s):  
M. L. Agarwal ◽  
P. K. Pande ◽  
Rajendra Prakash

The mean flow past a fence submerged in a turbulent boundary layer is numerically simulated. The governing equations have been simplified by neglecting the convective effects of turbulence and solved numerically using experimental boundary conditions. The information obtained includes the shape and size of the upstream and downstream separation bubbles and the streamline pattern in the entire flow field. General agreement between the simulated and the experimental flow field was found.


1972 ◽  
Vol 51 (4) ◽  
pp. 657-672 ◽  
Author(s):  
J. E. Lewis ◽  
R. L. Gran ◽  
T. Kubota

A wind-tunnel model was developed to study the two-dimensional turbulent boundary layer in adverse and favourable pressure gradients with out the effects of streamwise surface curvature. Experiments were performed at Mach 4 with an adiabatic wall, and mean flow measurements within the boundary layer were obtained. The data, when viewed in the velocity transformation suggested by Van Driest, show good general agreement with the composite boundary-layer profile developed for the low-speed turbulent boundary layer. Moreover, the pressure gradient parameter suggested by Alber & Coats was found to correlate the data with low-speed results.


Author(s):  
Alan D. Henderson ◽  
Gregory J. Walker ◽  
Jeremy D. Hughes

The influence of free-stream turbulence on wake dispersion and boundary layer transition processes has been studied in a 1.5-stage axial compressor. An inlet grid was used to produce turbulence characteristics typical of an embedded stage in a multistage machine. The grid turbulence strongly enhanced the dispersion of inlet guide vane (IGV) wakes. This modified the interaction of IGV and rotor wakes, leading to a significant decrease in periodic unsteadiness experienced by the downstream stator. These observations have important implications for the prediction of clocking effects in multistage machines. Boundary layer transition characteristics on the outlet stator were studied with a surface hot-film array. Observations with grid turbulence were compared with those for the natural low turbulence inflow to the machine. The transition behavior under low turbulence inflow conditions with the stator blade element immersed in the dispersed IGV wakes closely resembled the behavior with elevated grid turbulence. It is concluded that with appropriate alignment, the blade element behavior in a 1.5-stage axial machine can reliably indicate the blade element behavior of an embedded row in a multistage machine.


Author(s):  
Edward Canepa ◽  
Davide Lengani ◽  
Francesca Satta ◽  
Ennio Spano ◽  
Marina Ubaldi ◽  
...  

The continuous tendency in modern aeroengine gas turbines towards reduction of blade count and ducts length may lead to aerodynamic loading increase beyond the limit of boundary layer separation. For this reason boundary layer separation control methods, up to now mostly employed in external aerodynamics, begin to be experimented in internal flows applications. The present paper reports the results of a detailed experimental study on low profile vortex generators used to control boundary layer separation on a large-scale flat plate with prescribed adverse pressure gradients. Inlet turbulent boundary layer conditions and pressure gradients are representative of aggressive turbine intermediate ducts. This activity is part of a joint European research program on Aggressive Intermediate Duct Aerodynamics (AIDA). The pressure gradients on the flat plate are generated by increasing the aperture angle of a movable wall opposite to the flat plate. To avoid separation on the movable wall, boundary layer suction is applied on it. Complementary measurements (surface static pressure distributions, surface flow visualizations by means of wall mounted tufts, instantaneous and time-averaged velocity fields in the meridional and cross-stream planes by means of Particle Image Velocimetry) have been used to survey the flow with and without vortex generators. Three different pressure gradients, which induce turbulent separation in absence of boundary layer control, were tested. Vortex generators height and location effects on separation reduction and pressure recovery increase were investigated. For the most effective VGs configurations detailed analyses of the flow field were performed, that demonstrate the effectiveness of this passive control device to control separation in diffusing ducts. Particle Image Velocimetry vector and vorticity plots illustrate the mechanisms by which the vortex generators transfer momentum towards the surface, re-energizing the near-wall flow and preserving the boundary layer from separation.


Sign in / Sign up

Export Citation Format

Share Document