Hot-Film Measurement of Natural Convection in Liquid Gallium With and Without Magnetic Fields

Volume 1 ◽  
2004 ◽  
Author(s):  
B. Xu ◽  
B. Q. Li ◽  
D. E. Stock

The velocity and temperature fields induced by natural convection in liquid gallium were measured. Measurements were taken with and without an external magnetic field applied to the liquid gallium. The velocity field was measured with a hot-film anemometer and the temperature field with a thermocouple. The hot film was calibrated over a narrow range of temperatures in a rotating turntable filled with liquid gallium. The external magnetic field damped both the velocity and temperature fields compared to similar conditions when no external magnetic field was present. The experimental results compared reasonably well with previous numerical predictions.

2004 ◽  
Author(s):  
B. Xu ◽  
B. Q. Li ◽  
D. E. Stock

The results of an experimental investigation of natural convection driven flow of liquid gallium are presented. The gallium contained by a rectangular box with two opposite ends held at different temperatures and is subject to a uniform horizontal magnetic field. The objective of this study was to examine the damping effect of a magnetic field on the natural convection in a liquid metal. A hot film anemometry was used to measure the velocity profile and a thermocouple was used to measure the temperature field. The hot-film probe was calibrated over a narrow range of temperatures in a rotating container fill with liquid gallium. The velocity and temperature profiles are compared with previous numerical simulations and reasonably good agreement was found. The damping effect of the external magnetic field was observed in both the temperature and the velocity profiles and found to increase as the strength of the magnetic field increases.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1187-1225 ◽  
Author(s):  
Nicola Massarotti ◽  
Michela Ciccolella ◽  
Gino Cortellessa ◽  
Alessandro Mauro

Purpose – The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered. Design/methodology/approach – A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement. Findings – For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number. Research limitations/implications – A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems. Practical implications – The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility. Originality/value – This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.


2021 ◽  
pp. 91-97
Author(s):  
O.L. Andrieieva ◽  
B.V. Borts ◽  
А.F. Vanzha ◽  
I.М. Korotkova ◽  
V.I. Tkachenko

Convective mass transfer in a cylindrical viscous incompressible conductive fluid layer in an inhomogeneous temperature field and in the external magnetic field of the vacuum arc current through it is theoretically investigated in this work. For a horizontal layer of a viscous, incompressible, conducting liquid of a cylindrical shape, located in a temperature field inhomogeneous in height and in an external magnetic field of a vacuum arc current flowing through it, the original equations are written. These equations consist of linearized equations for small velocity perturbations, small deviations from the equilibrium values of temperature, pressure, and magnetic field strength. The considered boundary value problem is solved for the case of free boundaries. Comparison of the experimental data with theoretical calculations made it possible to determine the rotation velocity of the steel melt during vacuum arc melting.


1962 ◽  
Vol 84 (4) ◽  
pp. 334-338 ◽  
Author(s):  
J. A. Schetz ◽  
R. Eichhorn

The viscous flow equations for the unsteady free convection of a fluid near a doubly infinite vertical plate whose temperature or heat flux is an arbitrary function of time are treated by means of Laplace transforms. Exact solutions are obtained for several typical examples with arbitrary Prandtl number. The results are then generalized to give integral expressions for the velocity and temperature fields due to any prescribed time variation in wall temperature or surface heat flux.


Sign in / Sign up

Export Citation Format

Share Document