Study of Scale-Interactions in Strained and Destrained Turbulence

Author(s):  
Jun Chen ◽  
Joseph Katz ◽  
Charles Meneveau

This paper examines the interactions among different length-scales of turbulence during straining and de-straining of the flow. Understanding scale-interactions is a crucial ingredient in formulating improved subgrid models for Large Eddy Simulations. In this experimental study, planar Particle Image Velocimetry (PIV) measurements are performed in a water tank, in which high Reynolds number turbulence with very low mean velocity is generated by an array of spinning grids. Planar straining and de-straining are applied by pushing or pulling rectangular piston whose width is equal to that of the a rectangular tank towards and away from the bottom. The velocity of the piston is computer controlled and synchronized with the PIV system. The initial background turbulence, characterized by the distributions of rms values and energy spectra, confirms that that the turbulence is nearly isotropic and homogeneous. The applied straining is characterized using high-speed photography of the piston and by PIV measurements of the mean flow. The results consist of the time evolution of several turbulence parameters subjected to a sequence of straining and destraining motions, with particular emphasis on the Reynolds stresses, Sub-grid scale (SGS) stresses, SGS anisotropy and SGS dissipation. The paper also examines the scale dependence of the SGS stress and dissipation, and compares the energy flux between different scales during the straining and destraining parts of the deformation.

1977 ◽  
Vol 82 (4) ◽  
pp. 659-671 ◽  
Author(s):  
Steven J. Barker ◽  
Steven C. Crow

A new technique for generating a pair of line vortices in the laboratory has been developed. The mean flow of these vortices is highly two-dimensional, although most of the flow field is turbulent. This two-dimensionality permits the study of vortex motions in the absence of the Crow mutual induction instability and other three-dimensional effects. The vortices are generated in a water tank of dimensions 15 × 122 × 244 cm. They propagate vertically and their axes span the 15 cm width of the tank. One wall of the tank is transparent, and the flow is visualized using fluorescein dye. High speed photography is used to study both the transition to turbulence during the vortex formation process and the interaction of the turbulent vortices with a simulated ground plane.Transition occurs first in an annular region surrounding the core of each vortex, starting with a shear-layer instability on the rolled-up vortex sheet. The turbulent region then grows both radially inwards and radially outwards until the entire recirculation cell is turbulent. A ‘relaminarization’ of the vortex core appears to take place somewhat later.The interaction of the vortex pair with the ground plane does not follow the predictions of potential-flow theory for line vortices. Although the total circulation is apparently conserved, the vortices remain at a larger distance from the ground than is expected and eventually ‘rebound’ or move away from the ground. Differences between a free-surface boundary condition and a smooth or rough ground plane are discussed. The ground-plane interaction is qualitatively very similar to that of aircraft trailing vortices observed in recent flight tests.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare

Computational fluid dynamics (CFD) has been widely adopted in the compressor design process, but it remains a challenge to predict the flow details, performance, and stage matching for multistage, high-speed machines accurately. The Reynolds Averaged Navier-Stokes (RANS) simulation with mixing plane for bladerow coupling is still the workhorse in the industry and the unsteady bladerow interaction is discarded. This paper examines these discarded unsteady effects via deterministic fluxes using semi-analytical and unsteady RANS (URANS) calculations. The study starts from a planar duct under periodic perturbations. The study shows that under large perturbations, the mixing plane produces dubious values of flow quantities (e.g., whirl angle). The performance of the mixing plane can be considerably improved by including deterministic fluxes into the mixing plane formulation. This demonstrates the effect of deterministic fluxes at the bladerow interface. Furthermore, the front stages of a 19-blade row compressor are investigated and URANS solutions are compared with RANS mixing plane solutions. The magnitudes of divergence of Reynolds stresses (RS) and deterministic stresses (DS) are compared. The effect of deterministic fluxes is demonstrated on whirl angle and radial profiles of total pressure and so on. The enhanced spanwise mixing due to deterministic fluxes is also observed. The effect of deterministic fluxes is confirmed via the nonlinear harmonic (NLH) method which includes the deterministic fluxes in the mean flow, and the study of multistage compressor shows that unsteady effects, which are quantified by deterministic fluxes, are indispensable to have credible predictions of the flow details and performance of compressor even at its design stage.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hailong Chen ◽  
Baoyu Ni ◽  
Wenjin Hu ◽  
Yanzhuo Xue

The damage effects of ship structures under the contact jet loads of bubble are studied by using an electric spark bubble as well as high-speed photography. A series of model experiments of ship structures under contact explosion was carried out in a water tank. On the one hand, we monitored the displacement and period of the oscillation of a hull plate of a ship model with a large bending rigidity. On the other hand, we observed the overall motion of a box-beam model with a small bending rigidity. The results show that when the distance parameter is less than 0.6, the bubble jet will impact on the surface of the structure directly, which is defined as “contact bubble jet” herein. The contact bubble jet causes significant local loads on the ship and induces the “sagging moment” effect. This mainly results from the relatively negative bending moment caused by the bubble attached to the hull. With the increase of detonation distance, this negative bending moment decreases. As a result, the oscillation amplitude of the ship structure decreases sharply and the oscillation period reduces gradually.


2001 ◽  
Vol 428 ◽  
pp. 1-27 ◽  
Author(s):  
M. B. JONES ◽  
IVAN MARUSIC ◽  
A. E. PERRY

An experimental and theoretical investigation of turbulent boundary layers developing in a sink-flow pressure gradient was undertaken. Three flow cases were studied, corresponding to different acceleration strengths. Mean-flow measurements were taken for all three cases, while Reynolds stresses and spectra measurements were made for two of the flow cases. In this study attention was focused on the evolution of the layers to an equilibrium turbulent state. All the layers were found to attain a state very close to precise equilibrium. This gave equilibrium sink flow data at higher Reynolds numbers than in previous experiments. The mean velocity profiles were found to collapse onto the conventional logarithmic law of the wall. However, for profiles measured with the Pitot tube, a slight ‘kick-up’ from the logarithmic law was observed near the buffer region, whereas the mean velocity profiles measured with a normal hot wire did not exhibit this deviation from the logarithmic law. As the layers approached equilibrium, the mean velocity profiles were found to approach the pure wall profile and for the highest level of acceleration Π was very close to zero, where Π is the Coles wake factor. This supports the proposition of Coles (1957), that the equilibrium sink flow corresponds to pure wall flow. Particular interest was also given to the evolutionary stages of the boundary layers, in order to test and further develop the closure hypothesis of Perry, Marusic & Li (1994). Improved quantitative agreement with the experimental results was found after slight modification of their original closure equation.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


Author(s):  
Sedem Kumahor ◽  
Mark F. Tachie

Abstract Turbulent flows around a square cylinder and a rectangular cylinder with a streamwise aspect ratio of 5 in a uniform flow were investigated using time-resolved particle image velocimetry. The Reynolds number based on the cylinder height and oncoming flow velocity was 16200. Similarities and differences in the flow dynamics over the cylinders and in the near wake region were examined in terms of the mean flow, Reynolds stresses and triple velocity correlations. The budget of turbulent kinetic energy as well as temporal and spectral analyses were also performed. The results show that the primary, secondary and wake vortexes are smaller for the square cylinder compared to the large aspect ratio cylinder. There are regions of elevated Reynolds stresses and triple velocity correlations along the mean separating streamlines, and the magnitudes of these statistics are an order of magnitude higher over the square cylinder compared to the large aspect ratio cylinder. The topology of the triple velocity correlations shows low-speed ejection and high-speed sweep events, respectively, transporting instantaneous Reynolds normal stresses away from the mean separating streamline into the free-stream and toward the cylinder surface, regardless of aspect ratio. Near the leading and trailing edges of both cylinders, regions of negative turbulence production are observed and the dominant components contributing to this occurrence are discussed. Temporal autocorrelation coefficients of the streamwise and vertical velocity fluctuations show a periodic trend, with a periodicity that is directly linked to the Kármán shedding frequency and its second harmonic.


1986 ◽  
Vol 2 (4) ◽  
pp. 260-271 ◽  
Author(s):  
Bruce Elliott ◽  
Tony Marsh ◽  
Brian Blanksby

Three dimensional (3-D) high-speed photography was used to record the tennis service actions of eight elite tennis players. The direct linear transformation (DLT) method was used for 3-D space reconstruction from 2-D images recorded from laterally placed cameras operating at 200fps. Seven of the eight subjects initially positioned their center of gravity toward the front foot during the stance phase. When the elbow reached 90° in the backswing, the knees of the eight subjects were at or near their maximum attained flexion, and the upper arm was an extension of a line joining both shoulder joints. A mean maximum vertical shoulder velocity of 1.7ms−1during the leg drive produced a force at the shoulder that was eccentric to the racket-limb, thus causing a downward rotation of this limb as measured by a mean velocity of the racket of −5.8ms−1down the back. This leg drive increased the angular displacement of the loop and therefore provided a greater distance over which the racket could be accelerated for impact. All subjects swung the racket up to the ball, and all but one hit the ball with the racket angled slightly backward (M= 93.9°). An effective summation of body segments was apparent because resultant linear velocities showed an increase as the more distal segment endpoint approached impact, although all subjects decelerated the racket immediately prior to impact. Mean resultant ball velocities of 34.4ms−1for the female subjects and 42.4ms−1for the male subjects were achieved.


1985 ◽  
Vol 157 ◽  
pp. 405-448 ◽  
Author(s):  
J. H. Watmuff ◽  
H. T. Witt ◽  
P. N. Joubert

Measurements are presented for low-Reynolds-number turbulent boundary layers developing in a zero pressure gradient on the sidewall of a duct. The effect of rotation on these layers is examined. The mean-velocity profiles affected by rotation are described in terms of a common universal sublayer and modified logarithmic and wake regions.The turbulence quantities follow an inner and outer scaling independent of rotation. The effect appears to be similar to that, of increased or decreased layer development. Streamwise-energy spectra indicate that, for a given non-dimensional wall distance, it is the low-wavenumber spectral components alone that are affected by rotation.Large spatially periodic spanwise variations of skin friction are observed in the destabilized layers. Mean-velocity vectors in the cross-stream plane clearly show an array of vortex-like structures which correlate strongly with the skin-friction pattern. Interesting properties of these mean-flow structures are shown and their effect on Reynolds stresses is revealed. Near the duct centreline, where we have measured detailed profiles, the variations are small and there is a reasonable momentum balance.Large-scale secondary circulations are also observed but the strength of the pattern is weak and it appears to be confined to the top and bottom regions of the duct. The evidence suggests that it has minimally affected the flow near the duct centreline where detailed profiles were measured.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Martin Agelinchaab ◽  
Mark F. Tachie

A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.


1976 ◽  
Vol 73 (1) ◽  
pp. 165-188 ◽  
Author(s):  
H. K. Richards ◽  
J. B. Morton

Three turbulent shear flows with quadratic mean-velocity profiles are generated by using an appropriately designed honeycomb and parallel-rod grids with adjustable rod spacing. The details of two of the flow fields, with quadratic mean-velocity profiles with constant positive mean-shear gradients ($\partial^2\overline{U}_1/\partial X^2_2 >0$), are obtained, and include, in the mean flow direction, the development and distribution of mean velocities, fluctuating velocities, Reynolds stresses, microscales, integral scales, energy spectra, shear correlation coefficients and two-point spatial velocity correlation coefficients. A third flow field is generated with a quadratic mean velocity profile with constant negative mean-shear gradient ($\partial^2\overline{U}_1/\partial X^2_2 < 0$), to investigate in the mean flow direction the effect of the change in sign on the resulting field. An open-return wind tunnel with a 2 × 2 × 20 ft test-section is used.


Sign in / Sign up

Export Citation Format

Share Document