Effects of Flame Development and Structure on Thermo-Acoustic Oscillations of Premixed Turbulent Flames

Volume 4 ◽  
2004 ◽  
Author(s):  
Pratap Sathiah ◽  
Andrei N. Lipatnikov ◽  
Jerzy Chomiak

Non-stationary confined premixed turbulent flames stabilized behind a bluff body are studied. A simple kinematic model of such flames was developed by Dowling [9] who reduced the combustion process to the propagation of an infinitely thin flame at a constant speed. The goal of this work is to extend the model by taking into account the structure of premixed turbulent flames and the development of turbulent flame speed and thickness. For these purposes, the so-called Flame Speed Closure model for multi-dimensional simulations of premixed turbulent flames is adapted and combined with the aforementioned Dowling model. Simulations of the heat release rate dynamics for ducted flames due to oncoming flow oscillations have been performed. Typical results show that the oscillations of the integrated heat release rate follow the oncoming flow velocity oscillations with certain time delay. The delays computed using the Dowling and the above approach are different, thus indicating the importance of resolving flame structure when modeling ducted flame oscillations.

2021 ◽  
Author(s):  
Meysam Sahafzadeh ◽  
Seth B. Dworkin ◽  
Larry W. Kostiuk

The stretched laminar flame model provides a convenient approach to embed realistic chemical kinetics when simulating turbulent premixed flames. When positive-only periodic strain rates are applied to a laminar flame there is a notable phase lag and diminished amplitude in heat release rate. Similar results have being observed with respect to the other component of stretch rate, namely the unsteady motion of a curved flame when the stretch rates are periodic about zero. Both cases showed that the heat release rate or consumption speed of these laminar-premixed flames vary significantly from the quasi-steady flamelet model. Deviation from quasi-steady behaviour increases as the unsteady flow time scale approaches the chemical time scale that is set by the stoichiometry. A challenge remains in how to use such results predictively for local and instantaneous consumption speed for small segments of turbulent flames where their unsteady stretch history is not periodic. This paper uses a frequency response analysis as a characterization tool to simplify the complex non-linear behaviour of premixed methane air flames for equivalence ratios from 1.0 down to 0.7, and frequencies from quasi-steady up to 2000 Hz using flame transfer functions. Various linear and nonlinear models were used to identify appropriate flame transfer functions for low and higher frequency regimes, as well as extend the predictive capabilities of these models. Linear models were only able to accurately predict the flame behaviour below a threshold of when the fluid and chemistry time scales are the same order of magnitude. Other proposed transfer functions were tested against arbitrary multi-frequency stretch inputs and were shown to be effective over the full range of frequencies.


Author(s):  
A. T. Hsu ◽  
M. S. Anand ◽  
M. K. Razdan

The evolution probability density function (PDF) method provides a framework for the simulation of both diffusion and premixed turbulent flames. With this method, the chemical reaction rates are treated without approximation. In contrast, the conventional Reynolds-average methods need to model the mean reaction rates in turbulent flame calculations. In addition, conventional methods require special models for premixed flames that are developed under restrictive assumptions and rely on ad hoc expressions for the rate of reaction progress. The present work demonstrates the capability of the PDF method in realistic combustor design calculations. A lean premixed flame swirl combustor is simulated using the scalar PDF method, and the results are compared with experimental data. It is shown that the PDF method can correctly predict the turbulent flame speed and location of the flame. The ability of the PDF method to handle finite-rate complex chemistry of any number of reaction steps makes it an ideal candidate for emissions predictions in low emission combustor designs.


2019 ◽  
Vol 489 (1) ◽  
pp. 36-51 ◽  
Author(s):  
E P Hicks

ABSTRACT Rayleigh–Taylor (RT) unstable flames are a key component of Type Ia and Iax supernovae explosions, but their complex hydrodynamics is still not well understood. These flames are affected not only by the RT instability, but also by the turbulence it generates. Both processes can increase the flame speed by stretching and wrinkling the flame. This makes it hard to choose a subgrid model for the flame speed in full star Type Ia or Iax simulations. Commonly used subgrid models get around this difficulty by assuming that either the RT instability or turbulence is dominant and sets the flame speed. In previous work, we evaluated the physical assumptions and predictive abilities of these two types of models by analysing a large parameter study of 3D direct numerical simulations of RT unstable flames. Surprisingly, we found that the flame dynamics is dominated by the RT instability and that RT unstable flames are very different from turbulent flames. In particular, RT unstable flames are thinner rather than thicker when turbulence is strong. In addition, none of the turbulent flame speed models adequately predicted the flame speed. We also showed that the RT flame speed model failed when the RT instability was strong, suggesting that geometrical burning effects also influence the flame speed. However, these results depended on simulations with Re ≲ 720. In this paper, we extend the parameter study to higher Reynolds number and show that the basic conclusions of our previous study still hold when the RT-generated turbulence is stronger.


Author(s):  
Tadej Holler ◽  
Varun Jain ◽  
Ed M. J. Komen ◽  
Ivo Kljenak

The CFD combustion modeling approach based on two combustion models was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont’s Turbulent Flames Speed Closure (TFC) model and Lipatnikov’s Flame Speed Closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in Nuclear Power Plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Author(s):  
Martin Lauer ◽  
Mathieu Zellhuber ◽  
Thomas Sattelmayer ◽  
Christopher J. Aul

Imaging of OH* or CH* chemiluminescence with intensified cameras is often employed for the determination of heat release in premixed flames. Proportionality is commonly assumed, but in the turbulent case this assumption is not justified. Substantial deviations from proportionality are observed, which are due to turbulence-chemistry interactions. In this study a model based correction method is presented to obtain a better approximation of the spatially resolved heat release rate of lean turbulent flames from OH* measurements. The correction method uses a statistical strain rate model to account for the turbulence influence. The strain rate model is evaluated with time-resolved velocity measurements of the turbulent flow. Additionally, one-dimensional simulations of strained counterflow flames are performed to consider the nonlinear effect of turbulence on chemiluminescence intensities. A detailed reaction mechanism, which includes all relevant chemiluminescence reactions and deactivation processes, is used. The result of the simulations is a lookup table of the ratio between heat release rate and OH* intensity with strain rate as parameter. This lookup table is linked with the statistical strain rate model to obtain a correction factor which accounts for the nonlinear relationships between OH* intensity, heat release rate, and strain rate. The factor is then used to correct measured OH* intensities to obtain the local heat release rate. The corrected intensities are compared to heat release distributions which are measured with an alternative method. For all investigated flames in the lean, partially premixed regime the corrected OH* intensities are in very good agreement with the heat release rate distributions of the flames.


Author(s):  
Kedar G. Bhide ◽  
Sheshadri Sreedhara

Abstract Syngas is an attractive alternative to currently popular hydrocarbon fuels due to its ability to be synthesized from multiple sources and lower carbon content. Direct Numerical Simulation (DNS) studies on premixed and non-premixed syngas flames have recently received attention. In this light, DNS of turbulent premixed syngas has been performed. Influence of turbulence and differential diffusion effects on chemical pathways of fuels like Hydrogen and methane has been studied in the past. Similar study on syngas flame has not been reported in the literature. Two cases with variation in the intensity of turbulence have been reported in this study. Effect of differential diffusion and turbulence on heat release rate and fuel consumption rate has been discussed. The behavior of heat release rate and fuel consumption rate was largely similar between laminar and turbulent flames considered in this study. Influence of species Lewis number was found to be more pronounced than that of turbulence.


Author(s):  
Ehsan Abbasi-Atibeh ◽  
Sandeep Jella ◽  
Jeffrey M. Bergthorson

Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when the Le is varied. The test data is comprised of Le ≪ 1 (Hydrogen), Le ≈ 1 (Methane), and Le > 1 (Propane) flames stabilized at various turbulence levels. The experiments were carried out in a Hot exhaust Opposed-flow Turbulent Flame Rig (HOTFR), which consists of two axially-opposed, symmetric turbulent round jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame, and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed Particle Image Velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le ≪ 1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient, and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically-stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the FGM model in a RANS context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity, however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.


Author(s):  
Martin Lauer ◽  
Thomas Sattelmayer

The determination of the heat release in technical flames is commonly done via bandpass filtered chemiluminescence measurements in the wavelength range of OH∗ or CH∗ radicals, which are supposed to be a measure for the heat release rate. However, these indirect heat release measurements are problematic because the measured intensities are the superposition of the desired radical emissions and contributions from the broadband emissions of CO2∗. Furthermore, the chemiluminescence intensities are strongly affected by the local air excess ratio of the flame and the turbulence intensity in the reaction zone. To investigate the influence of these effects on the applicability of chemiluminescence as a measure for the heat release rate in turbulent flames with mixture gradients, a reference method is used, which is based on the first law of thermodynamics. It is shown that although the integral heat release can be correlated with the integral chemiluminescence intensities, the heat release distribution is not properly represented by any signal from OH∗ or CH∗. No reliable information about the spatially resolved heat release can be obtained from chemiluminescence measurements in flames with mixture gradients.


Author(s):  
Iveta Marková ◽  
Jozef Lauko ◽  
Linda Makovická Osvaldová ◽  
Vladimír Mózer ◽  
Jozef Svetlík ◽  
...  

This article presents an experimental investigation of the flame characteristics of the gasoline pool fire. A series of experiments with different pool sizes and mixture contents were conducted to study the combustion behavior of pool fires in atmospheric conditions. The initial pool area of 0.25 m2, 0.66 m2, and 2.8 m2, the initial volume of fuel and time of burning process, and the initial gasoline thickness of 20 mm were determined in each experiment. The fire models are defined by the European standard EN 3 and were used to model fire of the class MB (model liquid fire for the fire area 0.25 m2), of the class 21B (model liquid fire for the fire area 0.66 m2), and 89B (model liquid fire for the fire area 2.8 m2). The fire models were used to class 21B and 89B for fuel by Standard EN 3. The flame geometrical characteristics were recorded by a CCD (charge-coupled device) digital camera. The results show turbulent flame with constant loss burning rate per area, different flame height, and different heat release rate. Regression rate increases linearly with increasing pans diameter. The results show a linear dependence of the HRR (heat release rate) depending on the fire area (average 2.6 times).


Sign in / Sign up

Export Citation Format

Share Document