Arithmetic Mean Temperature Difference and the Concept of Heat Exchanger Efficiency

Author(s):  
Ahmad Fakheri

In this paper, it is shown that the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids, can be used instead of the Log Mean Temperature Difference (LMTD) in heat exchanger analysis. For a given value of AMTD, there exists an optimum heat transfer rate, Qopt, given by the product of UA and AMTD such that the rate of heat transfer in the heat exchanger is always less than this optimum value. The optimum heat transfer rate takes place in a balanced counter flow heat exchanger and by using this optimum rate of heat transfer, the concept of heat exchanger efficiency is introduced as the ratio of the actual to optimum heat transfer rate. A general algebraic expression as well as a chart is presented for the determination of the efficiency and therefore the rate of heat transfer for parallel flow, counter flow, single stream, as well as shell and tube heat exchangers with any number of shells and even number of tube passes per shell. In addition to being more intuitive, the use of AMTD and the heat exchanger efficiency allow the direct comparison of the different types of heat exchangers.

Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in an ideal balanced counter flow heat exchanger. It has been shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. The function defining the efficiency of these heat exchangers is identical to that of a constant area fin with an insulated tip. This paper presents exact expressions for the efficiencies of the different cross flow heat exchangers. It is shown that by generalizing the definition of Fa, very accurate results can be obtained by using the same algebraic expression, or a single algebraic expression can be used to assess the performance of a variety of commonly used heat exchangers.


Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in a balanced counter flow heat exchanger. It is shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. Remarkably, the functional dependence of the efficiency of these heat exchangers on this parameter is identical to that of a constant area fin with an insulated tip. Also a general algebraic expression as well as a generalized chart is presented for the determination of the efficiency of shell and tube heat exchangers with any number of shells and even number of tube passes per shell, when the Number of Transfer Units (NTU) and the capacity ratio are known. Although this general expression is a function of the number of shells and another nondimensional group, it turns out to be almost independent of the number of shells over a wide range of practical interest. The same general expression is also applicable to parallel and counter flow heat exchangers.


2012 ◽  
Vol 9 (1) ◽  
pp. 85-91
Author(s):  
Mohammad Azim Aijaz ◽  
T. S. Ravikumar

the hot fluid outlet temperature, cold fluid outlet temperature, heat transfer rate and effectiveness at varying hot and cold fluid inlet temperatures using, log mean temperature difference (LMTD) and effectiveness-number of transfer units (ε-NTU) method. The obtained result illustrates how heat transfer rate and effectiveness increases or decreases at varying hot and cold fluid inlet temperatures. The result obtained from both LMTD and å-NTU method gives statistically significant values. The objective of this paper is to find out the optimal temperature at which heat transfer rate and effectiveness are maximum.


Author(s):  
Rajesh Kocheril ◽  
Jacob Elias

Heat exchanger is an essential component of an engine cooling system. Radiators are compact heat exchangers used to transfer the heat absorbed from engine to the cooling media. The jacket cooling water gets cooled and re-circulated into system after exchanging the heat with cooling water in a heat exchanger. Conventional fluids like water, oil, ethylene glycol, etc. possess less heat transfer performance; therefore, it is essential to have a compact and effective heat transfer system to obtain the required heat transfer. A reduction in energy consumption is possible by improving the performance of heat exchanging systems and incorporating various heat transfer enhancement techniques. In this paper, the heat transfer rate using nano-sized ferrofluid with and without magnetization is analysed using CFD simulation and compared with the experimental values obtained from a heat exchanger using water as base fluid. The heat transfer rate is measured using different combinations by varying the percentage of nano particles and by introduction of different magnetic intensity (gauss) on to the ferrofluid. The optimum heat transfer rate and efficiency of heat exchanger is calculated with the different combinations and the values are compared with the values of CFD simulation. CFD simulation was undertaken for water alone as cooling media and for water with ferro particle addition from 2% to 5%. The difference in temperature observed to be similar with experimental values. The deviation is within the acceptable limit and therefore the experimental findings are validated. The experiment was conducted on a parallel flow heat exchanger with water alone as cooling media, water with varying percentage of ferro fluid and water with varying magnetic intensity on ferrofluid. Percentage of ferro particles added up to where the optimum temperature difference could be obtained and the magnetic intensity also varied up to the optimum value.


Author(s):  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Ebrahim Al Hajri

The quest to achieve higher heat transfer rate, smaller size and minimum pressure drop is a main area of focus in the design of heat exchangers. Plate heat exchangers are one of viable candidates to deliver higher heat duties but still have a drawback of higher pressure drop due to long restricted flow path. Motivated by demand of miniaturization and cost reduction, a novel design of tubular microchannel heat exchanger for single phase flow employing ammonia water mixture is proposed. Numerical simulation of unit fluid domain is conducted in ANSYS Fluent. Parametric study of the different flow geometries is evaluated in terms of Nusselt number and pressure drop. The salient features of the design include ultra-compact size with higher heat transfer rate and acceptable pressure drop.


2011 ◽  
Vol 15 (1) ◽  
pp. 183-194 ◽  
Author(s):  
Fard Haghshenas ◽  
Mohammad Talaie ◽  
Somaye Nasr

The plate and concentric tube heat exchangers are tested by using the water-water and nanofluid-water streams. The ZnO/Water (0.5%v/v) nanofluid has been used as the hot stream. The heat transfer rate omitted of hot stream and overall heat transfer coefficients in both heat exchangers are measured as a function of hot and cold streams mass flow rates. The experimental results show that the heat transfer rate and heat transfer coefficients of the nanofluid in both of the heat exchangers is higher than that of the base liquid (i.e., water) and the efficiency of plate heat exchange is higher than concentric tube heat exchanger. In the plate heat exchanger the heat transfer coefficient of nanofluid at mcold = mhot = 10 gr/sec is about 20% higher than base fluid and under the same conditions in the concentric heat exchanger is 14% higher than base fluid. The heat transfer rate and heat transfer coefficients increases with increase in mass flow rates of hot and cold streams. Also the CFD1 code is used to simulate the performance of the mentioned heat exchangers. The CFD results are compared to the experimental data and showed good agreement. It is shown that the CFD is a reliable tool for investigation of heat transfer of nanofluids in the various heat exchangers.


Author(s):  
D. Sarath Chandra, Et. al.

The impact of overall heat transfer coefficient and the pressure drop on performance of a counter flow helical tube heat exchanger with Cu-Ni-water hybrid nanofluid are computed. To evaluate heat transfer rate for a mix of base fluid with copper and nickel nanoparticles of volume concentrations 0.02,0.04 and 0.06 are added. To control the sedimentation of nanoparticles in the base fluid Ultrasonication followed by magnetic stirrer method is used. In this work experiments are conducted with to enhance heat transfer rate rather than stability of nanoparticles. Experiments are conducted for different concentrations and coil turns under laminar flow regime. The results are shown that 0.04 % vol of Cu-Ni/H2O with 12 turns is more predominate foe food processing applications due to its consistency in maintaining a constant temperature.


2020 ◽  
Vol 70 (1) ◽  
pp. 47-56
Author(s):  
Gužela Štefan ◽  
Dzianik František

AbstractThe heat exchangers are used to heat or cool the material streams. To calculate the heat exchanger, it is important to know the type of heat exchanger and its operating characteristic. This characteristic determines one of the key variables (e.g., F, NTUmin, or θ). In some special cases, it is not necessary to know its operating characteristic to calculate the heat exchanger. This article deals with these special cases. The article also contains a general dependency that allows checking the key variables related to a given heat exchanger.


2018 ◽  
Vol 16 (2) ◽  
pp. 233 ◽  
Author(s):  
Seyed Alireza Ghazanfari ◽  
Malan Abdul Wahid

Heat transfer rate, pressure loss and efficiency are considered as the most important parameters in designing compact heat exchangers. Despite different types of heat exchangers, fin-and-tube compact heat exchangers are still common device in different industries due to the diversity of usage and the low space installation need. The efficiency of the compact heat exchanger can be increased by introducing the fins and increasing the heat transfer rate between the surface and the surroundings. Numerous modifications can be applied to the fin surface to increase heat transfer. Delta-winglet vortex generators (VGs) are known to enhance the heat transfer between the energy carrying fluid and the heat transfer surfaces in plate-fin-and-tube banks, but they have drawbacks as well. They increase the pressure loss and this should be considered. In this paper, the thermal efficiency of compact heat exchanger with VGs is investigated in different variations. The angle of attack, the length and horizontal and vertical position of winglet are the main parameters to consider. Numerical analyses are carried out to examine finned tube heat exchanger with winglets at the fin surface in a relatively low Reynolds number flow for the inline tube arrangements. The results showed that the length of the winglet significantly affects the improvement of heat transfer performance of the fin-and-tube compact heat exchangers with a moderate pressure loss penalty. In addition, the results show that the optimization cannot be performed for one criterion only. More parameters should be considered at the same time to run the process properly and improve the heat exchanger efficiency.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4931
Author(s):  
Ilya Astrouski ◽  
Miroslav Raudensky ◽  
Tereza Kudelova ◽  
Tereza Kroulikova

Currently, liquid-to-gas heat exchangers in buildings, domestic appliances and the automotive industry are mainly made of copper and aluminum. Using plastic instead of metal can be very beneficial from an economic and environmental point of view. However, it is required that a successful plastic design meets all the requirements of metal heat exchangers. The polymeric hollow fiber heat exchanger studied in this work is completive to common metal finned heat exchangers. Due to its unique design (the use of thousands of thin-walled microtubes connected in parallel), it achieves a high level of compactness and thermal performance, low pressure drops and high operation pressure. This paper focuses on an important aspect of heat exchanger operation—its fouling in conditions relevant to building and domestic application. In heating, ventilation and air conditioning (HVAC) and automotive and domestic appliances, outdoor and domestic dust are the main source of fouling. In this study, a heat exchanger made of polymeric hollow fibers was tested in conditions typical for indoor HVAC equipment, namely with the 20 °C room air flowing through the hot water coil (water inlet 50 °C) with air velocity of 1.5 m/s. ASHRAE test dust was used as a foulant to model domestic dust. A polymeric heat exchanger with fibers with an outer diameter of 0.6 mm (1960 fibers arranged into 14 layers in total) and a heat transfer area of 0.89 m2 was tested. It was proven that the smooth polypropylene surface of hollow fibers has a favorable antifouling characteristic. Fouling evolution on the metallic heat transfer surfaces of a similar surface density was about twice as quick as on the plastic one. The experimental results on the plastic heat exchanger showed a 38% decrease in the heat transfer rate and a 91% increase in pressure drops after eighteen days of the experiment when a total of 4000 g/m2 of the test dust had been injected into the air duct. The decrease in the heat transfer rate of the heat exchanger was influenced mainly by clogging in the frontal area because the first layers were fouled significantly more than the deeper layers.


Sign in / Sign up

Export Citation Format

Share Document