Numerical Simulation and Experimental Validation of Flow and Heat Transfer in Flat-Tube Heat Exchangers

Author(s):  
Jiuyang Yu ◽  
Wenwu Xia ◽  
Xingkui Feng

A three dimensional numerical simulation study has been carried out to predict air flow and temperature distribution in flat-tube heat exchangers. Due to the symmetry in geometrical construction, a section of heat exchanger has been considered for CFD analysis by using PHOENICS software. The k-ε turbulence model has been used to solve the transport equations for turbulent flow energy and the dissipation rate. In order to check the validity of the computational modeling, the results were compared with the measured flow parameters such as pressure and velocity distribution. It is found that both the heat transfer coefficient and the pressure drop for the shell-side are in good arrangement with experimental results. Comparing with circular-tube heat exchangers, the simulation result shows that the pressure drop of flat-tube heat exchangers decreases 12%∼20%, and the coefficient of integral performance Nu/ζ0.29 has an increment, which is between 22%∼34%.

2010 ◽  
Vol 15 (5) ◽  
pp. 427-432 ◽  
Author(s):  
Xia Yang ◽  
Jie Zhang ◽  
Jiuyang Yu ◽  
Yanyang Wu ◽  
Yan Luo ◽  
...  

Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


2013 ◽  
Vol 465-466 ◽  
pp. 500-504 ◽  
Author(s):  
Shahrin Hisham Amirnordin ◽  
Hissein Didane Djamal ◽  
Mohd Norani Mansor ◽  
Amir Khalid ◽  
Md Seri Suzairin ◽  
...  

This paper presents the effect of the changes in fin geometry on pressure drop and heat transfer characteristics of louvered fin heat exchanger numerically. Three dimensional simulation using ANSYS Fluent have been conducted for six different configurations at Reynolds number ranging from 200 to 1000 based on louver pitch. The performance of this system has been evaluated by calculating pressure drop and heat transfer coefficient. The result shows that, the fin pitch and the louver pitch have a very considerable effect on pressure drop as well as heat transfer rate. It is observed that increasing the fin pitch will relatively result in an increase in heat transfer rate but at the same time, the pressure drop will decrease. On the other hand, low pressure drop and low heat transfer rate will be obtained when the louver pitch is increased. Final result shows a good agreement between experimental and numerical results of the louvered fin which is about 12%. This indicates the capability of louvered fin in enhancing the performance of heat exchangers.


Author(s):  
Ece Özkaya ◽  
Selin Aradag ◽  
Sadik Kakac

In this study, three-dimensional computational fluid dynamics (CFD) analyses are performed to assess the thermal-hydraulic characteristics of a commercial Gasketed Plate Heat Exchangers (GPHEx) with 30 degrees of chevron angle (Plate1). The results of CFD analyses are compared with a computer program (ETU HEX) previously developed based on experimental results. Heat transfer plate is scanned using photogrammetric scan method to model GPHEx. CFD model is created as two separate flow zones, one for each of hot and cold domains with a virtual plate. Mass flow inlet and pressure outlet boundary conditions are applied. The working fluid is water. Temperature and pressure distributions are obtained for a Reynolds number range of 700–3400 and total temperature difference and pressure drop values are compared with ETU HEX. A new plate (Plate2) with corrugation pattern using smaller amplitude is designed and analyzed. The thermal properties are in good agreement with experimental data for the commercial plate. For the new plate, the decrease of the amplitude leads to a smaller enlargement factor which causes a low heat transfer rate while the pressure drop remains almost constant.


Author(s):  
V. P. Malapure ◽  
A. Bhattacharya ◽  
Sushanta K. Mitra

This paper presents a three-dimensional numerical analysis of flow and heat transfer over plate fins in a compact heat exchanger used as a radiator in the automotive industry. The aim of this study is to predict the heat transfer and pressure drop in the radiator. FLUENT 6.1 is used for simulation. Several cases are simulated in order to investigate the coolant temperature drop, heat transfer coefficient for the coolant and the air side along with the corresponding pressure drop. It is observed that the heat transfer and pressure drop fairly agree with experimental data. It is also found that the fin temperature depends on the frontal air velocity and the coolant side heat transfer coefficient is in good agreement with classical Dittus–Boelter correlation. It is also found that the specific dissipation increases with the coolant and the air flow rates. This work can further be extended to perform optimization study for radiator design.


2011 ◽  
Vol 383-390 ◽  
pp. 6657-6662 ◽  
Author(s):  
Jun Xiao Feng ◽  
Qi Bo Cheng ◽  
Si Jing Yu

Based on the analysis of structural characteristic superiority, the process of combustion, flue gas flow and heat transfer in the upright magnesium reducing furnace, the three dimensional mathematical model is devoloped. And numerical simulation is performed further with the commercial software FLUENT. Finally, the flow and temperature field in furnace and temperature field in reducing pot have been obtained. The results indicate that the upright magnesium reducing furnace has perfect flue gas flow field and temperature field to meet the challenge of the magnesium reducing process; the major factors that affect the magnesium reducing reaction are the low thermal conductivity of slag and the high chemical reaction heat absorption.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Yinhai Zhu ◽  
Yanzhong Li

In this paper, four basic fins of the plate-fin heat exchangers, rectangular plain fin, strip offset fin, perforated fin, and wavy fin, are modeled and simulated by taking account of fin thickness, thermal entry effect, and end effect. Three-dimensional numerical simulations on the flow and heat transfer in the four fins are investigated and carried out at laminar flow regime. Validity of the modeling technique is verified by comparing computational results with both corresponding experimental data and three empirical correlations from literatures. Global average Colburn factor (j factor) and friction factor (f factor) and their local 1D streamwise-average distributions along the fins are presented by introducing data reduction method. The heat transfer behaviors in both the developing and developed regions are analyzed by examining variations of the local Nusselt number along the flow direction. It is found that the thermal entry length of the four fins might be expressed in the format of Le=c1 Rec2 Pr Dh, which has the same form as the one in a circular tube.


Sign in / Sign up

Export Citation Format

Share Document