Experimental and Computational Analysis of Natural Convection Over Flat Plate

2008 ◽  
Author(s):  
Farhana Afroz ◽  
Chowdhury Md. Feroz

Natural convection heat transfer over a flat plate with a heat source at bottom side of plate is studied experimentally and numerically. We consider the two-dimensional problem of both steady and unsteady natural convection over the flat plate at vertical, horizontal and inclined position. Experimental analysis is done for three different constant heat fluxes for each angle position. The Navier-Stokes and Energy equations with the Boussinesq approximation are written in Cartesian coordinate system. The problem is solved in the physical variables on the basis of a completely implicit Finite element Method order to examine the heat transfer characteristics. To see the effects of different angle position phenomena of natural convection over flat plate, the computational results presented in the form of streamlines for a wide range of Grashof number at different heat fluxes. The average Nusselt number of heated plate for different angle position has been observed.

Author(s):  
S. A. Patel ◽  
A. H. Raja ◽  
R. P. Chhabra

Abstract The heat transfer characteristics from an isothermal heated plate in a quiescent yield stress fluid in a cavity was investigated over a wide range of parameters (Rayleigh number, 102 ≤ Ra ≤ 105, Prandtl number, 10 ≤ Pr ≤ 100, and Bingham number, Bn ≥ 0) where the flow is known to be laminar and steady. The coupled momentum and energy equations have solved here numerically within the framework of Boussinesq approximation to capture the temperature-dependent fluid density. The results demonstrate that for a given value of the Rayleigh number, there exists a critical value of the Bingham number, above which the fluid is completely unyielded and heat transfer occurs solely by conduction. In order to delineate the effect of domain geometry on the conduction limit, the study was extended over a range of geometrical aspects by varying the aspect ratio (λ = diameter of the cavity/ a length of the plate), 2 ≤ λ ≤ 5. This work shows that the critical value of the Bingham number can be described as a function of geometry of domain, Ra and Pr. The value of critical Bingham number increases with the increasing aspect ratio and Rayleigh number in order to approach the conduction limit. The yield surfaces show that the increasing values of Rayleigh number induce fluid-like behaviour whereas Bingham number opposes this propensity. The average Nusselt number decreases with the increasing Bingham number due to the suppression of the advective component of heat transfer.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1508
Author(s):  
Nagesh Babu Balam ◽  
Tabish Alam ◽  
Akhilesh Gupta ◽  
Paolo Blecich

The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.


Author(s):  
Fakhreddine S. Oueslati ◽  
Rachid Bennacer ◽  
Habib Sammouda ◽  
Ali Belghith

The natural convection is studied in a cavity witch the lower half is filled with a porous media that is saturated with a first fluid (liquid), and the upper is filled with a second fluid (gas). The horizontal borders are heated and cooled by uniform heat fluxes and vertical ones are adiabatic. The formulation of the problem is based on the Darcy-Brinkman model. The density variation is taken into account by the Boussinesq approximation. The system of the coupled equations is resolved by the classic finite volume method. The numerical results show that the variation of the conductivity of the porous media influences strongly the flow structure and the heat transfer as well as in upper that in the lower zones. The effect of conductivity is conditioned by the porosity which plays a very significant roll on the heat transfer. The structures of this flow show that this kind of problem with specific boundary conditions generates a complex flow structure of several contra-rotating two to two cells, in the upper half of the cavity.


1991 ◽  
Vol 113 (1) ◽  
pp. 91-96 ◽  
Author(s):  
K. Sugiyama ◽  
Y. Ma ◽  
R. Ishiguro

The objective of the present study is to clarify the heat transfer characteristics of natural convection around a horizontal circular cylinder immersed in liquid metals. Experimental work concerning liquid metals sometimes involves such a degree of error that it is impossible to understand the observed characteristics in a measurement. Numerical analysis is a powerful means to overcome this experimental disadvantage. In the present paper we first show that the Boussinesq approximation is more applicable to liquid metals than to ordinary fluids and that the present analysis gives accurate heat transfer rates, even for a cylinder with a relatively large temperature difference (>100 K) between the heat transfer surface and fluid. It is found from a comparison of the present results with previous work that the correlation equations that have already been proposed predict values lower than the present ones.


2003 ◽  
Vol 125 (2) ◽  
pp. 282-288 ◽  
Author(s):  
Bassam A/K Abu-Hijleh

The problem of laminar natural convection from a horizontal cylinder with multiple equally spaced high conductivity permeable fins on its outer surface was investigated numerically. The effect of several combinations of number of fins and fin height on the average Nusselt number was studied over a wide range of Rayleigh number. Permeable fins provided much higher heat transfer rates compared to the more traditional solid fins for a similar cylinder configuration. The ratio between the permeable to solid Nusselt numbers increased with Rayleigh number, number of fins, and fin height. This ratio was as high as 8.4 at Rayleigh number of 106, non-dimensional fin height of 2.0, and with 11 equally spaced fins. The use of permeable fins is very advantageous when high heat transfer rates are needed such as in today’s high power density electronic components.


Sign in / Sign up

Export Citation Format

Share Document