Velocity Field Measurements in Leading Edge Wing Compartments

2008 ◽  
Author(s):  
V. Egan ◽  
D. T. Newport ◽  
V. Larcarac ◽  
B. Estebe

For many applications the optimisation of natural convection cooling is a major design consideration due to factors such as weight, accessibility, cost and power consumption. In aircraft wing compartments, natural convection is the dominant mode of heat transfer due to high wall temperatures resulting from solar loading and heat dissipating internal electronics. This paper investigates the flow structures in a leading edge compartment subject to various thermal boundary conditions. The experimental configuration consisted of two leading edge enclosures; the first is a single compartment while the second has an attached wing box. Particle image velocimetry (PIV) was employed to obtain velocity measurements of the flow in both leading edge enclosures. The second compartment investigated the effect of an adjacent fluid filled enclosure on the flow regime in the leading edge compartment. Higher local velocities were found in the second compartment due to an increase in buoyancy forces resulting from a lower of the average fluid temperature within the compartment. The introduction of a heat dissipating component gave rise to two separate convection structures and in general increased the fluctuations in the both temperature and velocities within the compartment.

Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Nirmalendu Biswas ◽  
Souvick Chatterjee ◽  
Mithun Das ◽  
Amlan Garai ◽  
Prokash C. Roy ◽  
...  

This work investigates natural convection in an enclosure with localized heating on the bottom wall with a flushed or protruded heat source and cooled on the top and the side walls. Velocity field measurements are done by using 2D particle image velocimetry (PIV) technique. Proper orthogonal decomposition (POD) has been used to create low dimensional approximations of the system for predicting the flow structures. The POD-based analysis reveals the modal structure of the flow field and also allows reconstruction of velocity field at conditions other than those used in PIV study.


Author(s):  
Sebastian Schulz ◽  
Alexander Schindler ◽  
Jens von Wolfersdorf

An investigation to characterize the effect of entrainment in a confined jet impingement arrangement is presented. The investigated configuration models an impingement cooled turbine blade passage and holds two staggered rows of inclined impingement jets. In order to distinctly promote thermal entrainment phenomena the jets were heated separately. A steady-state liquid crystal technique was used to obtain near-wall fluid temperature distributions for the impingement surfaces at adiabatic conditions. Additionally, flow field measurements were undertaken using Particle Image Velocimetry (PIV). Furthermore, compressible RANS simulations were carried out with ANSYS CFX using Menter’s SST turbulence model to accompany the experiments. Distributions of effectiveness, velocity, and turbulent kinetic energy detail the complexity of the aerothermal situation. The study was conducted for a jet Reynolds number range from 10,000 to 45,000. The experimental and numerical results are generally in good agreement. Nevertheless, the simulations predict flow features in particular regions of the geometry that are not as prominent in the experiments. These affect the effectiveness distributions, locally. The investigations revealed that the effectiveness is independent of the temperature difference between the heated and cold jet as well as the jet Reynolds number.


2017 ◽  
Vol 7 (1) ◽  
pp. 20160084 ◽  
Author(s):  
Nathan Phillips ◽  
Kevin Knowles ◽  
Richard J. Bomphrey

The wings of many insect species including crane flies and damselflies are petiolate (on stalks), with the wing planform beginning some distance away from the wing hinge, rather than at the hinge. The aerodynamic impact of flapping petiolate wings is relatively unknown, particularly on the formation of the lift-augmenting leading-edge vortex (LEV): a key flow structure exploited by many insects, birds and bats to enhance their lift coefficient. We investigated the aerodynamic implications of petiolation P using particle image velocimetry flow field measurements on an array of rectangular wings of aspect ratio 3 and petiolation values of P = 1–3. The wings were driven using a mechanical device, the ‘Flapperatus’, to produce highly repeatable insect-like kinematics. The wings maintained a constant Reynolds number of 1400 and dimensionless stroke amplitude Λ * (number of chords traversed by the wingtip) of 6.5 across all test cases. Our results showed that for more petiolate wings the LEV is generally larger, stronger in circulation, and covers a greater area of the wing surface, particularly at the mid-span and inboard locations early in the wing stroke cycle. In each case, the LEV was initially arch-like in form with its outboard end terminating in a focus-sink on the wing surface, before transitioning to become continuous with the tip vortex thereafter. In the second half of the wing stroke, more petiolate wings exhibit a more detached LEV, with detachment initiating at approximately 70% and 50% span for P = 1 and 3, respectively. As a consequence, lift coefficients based on the LEV are higher in the first half of the wing stroke for petiolate wings, but more comparable in the second half. Time-averaged LEV lift coefficients show a general rise with petiolation over the range tested.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Sebastian Schulz ◽  
Alexander Schindler ◽  
Jens von Wolfersdorf

An investigation to characterize the effect of entrainment in a confined jet impingement arrangement is presented. The investigated configuration shows an impingement-cooled turbine blade passage and holds two staggered rows of inclined impingement jets. In order to distinctly promote thermal entrainment phenomena, the jets were heated separately. A steady-state liquid crystal technique was used to obtain near-wall fluid temperature distributions for the impingement surfaces under adiabatic conditions. Additionally, flow field measurements were undertaken using particle image velocimetry (PIV). Furthermore, compressible Reynolds-averaged Navier–Stokes (RANS) simulations carried out with ansys cfx using Menter's shear stress transport (SST) turbulence model accompany the experiments. Distributions of effectiveness, velocity, and turbulent kinetic energy detail the complexity of the aerothermal situation. The study was conducted for a jet Reynolds number range from 10,000 to 45,000. The experimental and numerical results are generally in good agreement. Nevertheless, the simulations predict flow features in particular regions of the geometry that are not as prominent in the experiments. These affect the effectiveness distributions, locally. The investigations reveal that the effectiveness is independent of the temperature difference between the heated and cold jet as well as the jet Reynolds number.


Author(s):  
Nuri Alpay Ku¨rekci

Natural convection of air in a cubical volume is investigated experimentally and numerically. A cubical volume of 20×20×20 cm dimensions was built for the experimental study. One of the vertical walls covering the volume is hot, the other one is cold and the rest are adiabatic. Three walls are made of aluminum and the others are made of heat-resistant glass. The hot wall temperature is kept constant during the experiments by means of an electrical heater. The cold wall is at the ambient temperature. Other adiabatic surfaces are insulated with polyurethane foam. Experiments are performed in an air-conditioned room at 21°C. PIV (Particle Image Velocimetry) is used for velocity measurements. The FLUENT CFD software package is used for the numerical study. A three-dimensional solution is obtained for the laminar flow case for a 61×61×61 grid. The numerical and experimental results are compared with each other for the validation of the numerical solution under the testing conditions of TH = 69°C, TC = 41°C and Ra = 1.3×107. Results obtained from the numerical and experimental studies are in a reasonably good agreement with each other.


1998 ◽  
Vol 120 (4) ◽  
pp. 840-857 ◽  
Author(s):  
M. P. Dyko ◽  
K. Vafai

A heightened awareness of the importance of natural convective cooling as a driving factor in design and thermal management of aircraft braking systems has emerged in recent years. As a result, increased attention is being devoted to understanding the buoyancy-driven flow and heat transfer occurring within the complex air passageways formed by the wheel and brake components, including the interaction of the internal and external flow fields. Through application of contemporary computational methods in conjunction with thorough experimentation, robust numerical simulations of these three-dimensional processes have been developed and validated. This has provided insight into the fundamental physical mechanisms underlying the flow and yielded the tools necessary for efficient optimization of the cooling process to improve overall thermal performance. In the present work, a brief overview of aircraft brake thermal considerations and formulation of the convection cooling problem are provided. This is followed by a review of studies of natural convection within closed and open-ended annuli and the closely related investigation of inboard and outboard subdomains of the braking system. Relevant studies of natural convection in open rectangular cavities are also discussed. Both experimental and numerical results obtained to date are addressed, with emphasis given to the characteristics of the flow field and the effects of changes in geometric parameters on flow and heat transfer. Findings of a concurrent numerical and experimental investigation of natural convection within the wheel and brake assembly are presented. These results provide, for the first time, a description of the three-dimensional aircraft braking system cooling flow field.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

Sign in / Sign up

Export Citation Format

Share Document