High-Temperature Reactor Fuel Technology in the RAPHAEL European Project

Author(s):  
Virginie Basini ◽  
Sander de Groot ◽  
Pierre Guillermier ◽  
Franc¸ois Charollais ◽  
Fre´de´ric Michel ◽  
...  

Within the scope of the 5th EURATOM Framework Programme (FP) for the HTR-F and HTR-F1 projects, a new 4-year integrated project on very high temperature reactors (RAPHAEL: ReActor for Process Heat And Electricity) was started in April 2006 as part of the 6th Framework Programme. The Sub-Project on Fuel Technology (SP-FT) is one of eight sub-projects constituting the RAPHAEL project. R&D conducted in this sub-project focuses on understanding fuel behaviour, determining the limits of state-of-the-art fuel, and developing potential performance improvements. Fabrication processes were worked out for alternative fuel kernel composition (UCO instead of UO2) and coating (ZrC instead of SiC): i) UCO microstructure reduces fission product migration and is thus considered superior to UO2 under high burn-ups and high temperature gradients. For this reason, the manufacturing feasibility of UCO kernels using modified external sol-gel routes was addressed. The calcining and sintering steps were particularly studied. ii) For its better high temperature performance, ZrC is a candidate coating material for replacing SiC in TRISO (TRistructural ISOtropic) particles. One of the objectives was therefore to deposit a stoichiometric ZrC layer without impurities. An “analytical irradiation” experiment currently performed in the HFR — named PYCASSO for PYrocarbon irradiation for Creep And Swelling/Shrinkage of Objects — was set up to measure the changes in coating material properties as a function of neutron fluence, with samples coming from the new fabrication process. This experiment was started in April 2008 and will provide data on particle component behaviour under irradiation. This data is required to upgrade material models implemented in the ATLAS fuel simulation code. The PYCASSO irradiation experiment is a true Generation IV VHTR effort, with Korean and Japanese samples included in the irradiation. Further RAPHAEL results will be made available to the GIF VHTR Fuel and Fuel Cycle project partners in the future. Post-irradiation examinations and heat-up tests performed on fuel irradiated in an earlier project are being performed to investigate the behaviour of state-of-the-art fuel in VHTR normal and accident conditions. Very interesting results from destructive examinations performed on the HFR-EU1bis pebbles were obtained, showing a clear temperature (and high burn-up) influence on both kernel changes (including fission product behaviour) and the coating layers. Based on fuel particle models established earlier, the fuel modelling capabilities could be further improved: i) Modelling of fuel elements containing thousands of particles is expected to enable a statistical approach to mechanical particle behaviour and fission product release. ii) A database on historical and new fuel properties was built to enable validation of models. This paper reports on recent progress and main results of the RAPHAEL sub-project on fuel technology.

2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


2000 ◽  
Vol 53 (6) ◽  
pp. 147-174 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

A review of recent developments and state-of-the-art in research and understanding of damage and fatigue of ceramic matrix composites is presented. Both laminated as well as woven configurations are considered. The work on the effects of high temperature on fracture and fatigue of ceramic matrix composites is emphasized, because these materials are usually designed to operate in hostile environments. Based on a detailed discussion of the mechanisms of failure, the problems that have to be addressed for a successful implementation of ceramic matrix composites in design and practical operational structures are outlined. This review article includes 317 references.


2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


2007 ◽  
Vol 47 (12) ◽  
pp. 2065-2069 ◽  
Author(s):  
K. Akarvardar ◽  
A. Mercha ◽  
E. Simoen ◽  
V. Subramanian ◽  
C. Claeys ◽  
...  

2019 ◽  
Vol 963 ◽  
pp. 757-762
Author(s):  
Daniel B. Habersat ◽  
Aivars Lelis ◽  
Ronald Green

Our results reinforce the notion of the need for an improved high-temperature gate bias (HTGB) test method — one which discourages the use of slow (greater than ~1 ms) threshold-voltage (VT) measurements at elevated temperatures and includes biased cool-down if room temperature measurements are performed, to ensure that any ephemeral effects during the high-temperature stress are observed. The paper presents a series of results on both state-of-the-art commercially-available devices as well as older vintage devices that exhibit enhanced charge-trapping effects. Although modern devices appear to be robust, it is important to ensure that any new devices released commercially, especially by new vendors, are properly evaluated for VT stability.


Sign in / Sign up

Export Citation Format

Share Document